1. Nội dung câu hỏi
Không sử dụng máy tính cầm tay, tính giá trị của các biểu thức sau:
a) \(\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\);
b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\).
2. Phương pháp giải
a) Sử dụng kiến thức về công thức góc nhân đôi để tính: \(\sin 2\alpha = 2\sin \alpha \cos \alpha \)
b) Sử dụng kiến thức về công thức cộng để tính: \(\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)
3. Lời giải chi tiết
a) Đặt \(A \) \( = \sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\)
\( \Rightarrow A.\cos {6^0} \) \( = \cos {6^0}\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\)
\( = \frac{1}{2}\sin {12^0}\cos {12^0}\cos {24^0}\cos {48^0} \) \( = \frac{1}{4}\sin {24^0}\cos {24^0}\cos {48^0} \) \( = \frac{1}{8}\sin {48^0}\cos {48^0} \) \( = \frac{1}{{16}}\sin {96^0}\)
Do đó, \(A \) \( = \frac{{\sin {{96}^0}}}{{16\cos {6^0}}} \) \( = \frac{{\cos {6^0}}}{{16\cos {6^0}}} \) \( = \frac{1}{{16}}\)
b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\)
\( = \cos \left( {{{90}^0} - {{22}^0}} \right)\cos \left( {{{90}^0} - {{12}^0}} \right) + \cos {22^0}\cos {12^0} + \cos \left( {{{180}^0} + {{10}^0}} \right)\)
\( = \sin {22^0}\sin {12^0} + \cos {22^0}\cos {12^0} - \cos {10^0}\)
\( = \cos \left( {{{22}^0} - {{12}^0}} \right) - \cos {10^0} \) \( = \cos {10^0} - \cos {10^0} \) \( = 0\).
CHƯƠNG 5: HIDROCACBON NO
Unit 10: The ecosystem
Unit 2: Leisure time
Chuyên đề 3. Mở đầu điện tử học
Unit 8: Conservation
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11