1. Nội dung câu hỏi
Công thức \(\log x = 11,8 + 1,5M\) cho biết mối liên hệ giữa năng lượng x tạo ra (tính theo erg, 1erg tương đương với \({10^{ - 7}}\)jun) với độ lớn M theo thang Richter của một trận động đất.
a) Trận động đất có độ lớn 5 độ Richter tạo ra năng lượng gấp bao nhiêu lần so với trận động đất có độ lớn 3 độ Richter?
b) Người ta ước lượng rằng một trận động đất có độ lớn khoảng từ 4 đến 6 độ Richter. Năng lượng do trận động đất đó tạo ra nằm trong khoảng nào?
2. Phương pháp giải
a) Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có: \({\log _a}\frac{M}{N} = {\log _a}M - {\log _a}N\)
b) Sử dụng kiến thức về giải bất phương trình lôgarit để giải bất phương trình:
Bảng tổng kết về nghiệm của các bất phương trình:
Bất phương trình | \(a > 1\) | \(0 < a < 1\) |
\({\log _a}x > b\) | \(x > {a^b}\) | \(0 < x < {a^b}\) |
\({\log _a}x \ge b\) | \(x \ge {a^b}\) | \(0 < x \le {a^b}\) |
\({\log _a}x < b\) | \(0 < x < {a^b}\) | \(x > {a^b}\) |
\({\log _a}x \le b\) | \(0 < x \le {a^b}\) | \(x \ge {a^b}\) |
Chú ý:
+ Nếu \(a > 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}v\left( x \right) > 0\\u\left( x \right) > v\left( x \right)\end{array} \right.\)
+ Nếu \(0 < a < 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) < v\left( x \right)\end{array} \right.\)
3. Lời giải chi tiết
a) Gọi \({x_1},{x_2}\) (erg) lần lượt là năng lượng tạo ra của hai trận động đất có độ lớn lần lượt là \({M_1} = 5,{M_2} = 3\) (độ Richter)
Ta có: \(\log {x_1} = 11,8 + 1,5{M_1};\log {x_2} = 11,8 + 1,5{M_2}\)
Do đó, \(\log {x_1} - \log {x_2} = 1,5\left( {{M_1} - {M_2}} \right) \Rightarrow \log \frac{{{x_1}}}{{{x_2}}} = 3 \) \( \Leftrightarrow \frac{{{x_1}}}{{{x_2}}} = {10^3} = 1000\)
Vậy trận động đất có độ lớn 5 độ Richter tạo ra năng lượng gấp 1000 lần so với trận động đất có độ lớn 3 độ Richter.
b) Theo đầu bài ta có:
\(11,8 + 1,5.4 \le \log x \le 11,8 + 1,5.6 \) \( \Leftrightarrow 17,8 \le \log x \le 20,8 \) \( \Leftrightarrow {10^{17,8}} \le x \le {10^{20,8}}\).
Tải 10 đề thi học kì 1 Sinh 11
Ngữ âm
Unit 4: Planet Earth
Đề kiểm tra giữa kì 1
Unit 5: Vietnam & ASEAN
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11