1. Nội dung câu hỏi
Biểu thức \(P = \sqrt[3]{{{x^2}\sqrt {{x^3}} }}\) với \(x > 0\) được rút gọn bằng:
A. \(P = {x^{\frac{5}{3}}}\)
B. \(P = {x^{\frac{7}{6}}}\)
C. \(P = {x^{\frac{1}{3}}}\)
D. \(P = {x^{\frac{5}{6}}}\)
2. Phương pháp giải
Sử dụng công thức \(\sqrt[n]{{{a^m}}} = {a^{\frac{m}{n}}}\) và \({a^m}.{a^n} = {a^{m + n}}\) với \(a > 0;m \in Z;n \in {N^*}\)
3. Lời giải chi tiết
\(P = \sqrt[3]{{{x^2}\sqrt {{x^3}} }} = {\left( {{x^2}.{x^{\frac{3}{2}}}} \right)^{\frac{1}{3}}} = {x^{\frac{2}{3}}}.{x^{\frac{1}{2}}} = {x^{\frac{2}{3} + \frac{1}{2}}} = {x^{\frac{7}{6}}}\)
Chọn đáp án B.
Chương 6: Hợp chất carbonyl - Carboxylic acid
Bài 5: Một số hợp chất quan trọng của nitrogen
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 11
Chuyên đề 2. Truyền thông tin bằng sóng vô tuyến
Chủ đề 5. Giới thiệu chung về cơ khí động lực
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11