PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 91 trang 121 SBT toán 9 tập 1

Đề bài

Cho hình thang \(ABCD\) có hai cạnh bên là \(AD\) và \(BC\) bằng nhau, đường chéo \(AC\) vuông góc với cạnh bên \(BC\). Biết \(AD = 5a\), \(AC = 12a.\)

a) Tính \(\displaystyle {{\sin B + c{\rm{osB}}} \over {\sin B - c{\rm{osB}}}}.\)

b) Tính chiều cao của hình thang \(ABCD\).

Phương pháp giải - Xem chi tiết

a) Áp dụng định lí Py-ta-go và tỉ số lượng giác.

b) Chiều cao hình thang ABCD bằng chiều cao tam giác ABC, áp dụng tỉ số lượng giác, tìm chiều cao của tam giác ABC.

Lời giải chi tiết

 

a) Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

\(A{B^2} = B{C^2} + A{C^2} = {(5a)^2} + {(12a)^2}\)\( = 169{a^2}\)

Suy ra: \(AB = \sqrt {169{a^2}}  = 13a\)

Xét tam giác vuông ABC, theo định nghĩa tỉ số lượng giác của góc nhọn, ta có:

\(\sin \widehat B = \displaystyle {{AC} \over {AB}} = {{12a} \over {13a}} = {{12} \over {13}}\)

\(\cos \widehat B = \displaystyle {{BC} \over {AB}} = {{5a} \over {13a}} = {5 \over {13}}\)

Suy ra: 

\(\displaystyle {{\sin \widehat B + \cos \widehat B} \over {\sin \widehat B - \cos \widehat B}} = \displaystyle {\displaystyle {{{12} \over {13}} + {5 \over {13}}} \over {\displaystyle {{12} \over {13}} - {5 \over {13}}}}\)\( = \displaystyle {\displaystyle {{{17} \over {13}}} \over {\displaystyle {7 \over {13}}}} = {{17} \over {13}}.{{13} \over 7} = {{17} \over 7}\)

b) Kẻ \(CH \bot AB\)

Trong tam giác vuông \(BCH\), ta có:

\(CH = CB.\sin \widehat B = 5a.\displaystyle {{12} \over {13}} = {{60a} \over {13}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved