1. Nội dung câu hỏi
Biết \(y\) là hàm số của \(x\) thoả mãn phương trình \(xy = 1 + \ln y\). Tính \(y'\left( 0 \right)\).
2. Phương pháp giải
Dùng quy tắc tính đạo hàm của hàm số hợp, ta có:
\(y + xy' = {\left( {\ln y} \right)^\prime } = \frac{{y'}}{y} \Rightarrow y'\left( {\frac{1}{y} - x} \right) = y \Rightarrow y' = \frac{{{y^2}}}{{1 - xy}}\)
3. Lời giải chi tiết
Dùng quy tắc tính đạo hàm của hàm số hợp, ta có:
\(y + xy' = {\left( {\ln y} \right)^\prime } = \frac{{y'}}{y} \Rightarrow y'\left( {\frac{1}{y} - x} \right) = y \Rightarrow y' = \frac{{{y^2}}}{{1 - xy}}\)
Tại \(x = 0\), thay vào phương trình ta được \(1 + \ln y = 0 \Leftrightarrow y = {{\rm{e}}^{ - 1}} = \frac{1}{{\rm{e}}}\).
Vậy \(y'\left( 0 \right) = \frac{1}{{{{\rm{e}}^2}}}\).
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TIẾP THEO)
Giáo dục pháp luật
Chuyên đề 3. Vệ sinh an toàn thực phẩm
Review Unit 8
SBT Ngữ văn 11 - Chân trời sáng tạo tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11