SBT TOÁN TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Bài 9.15 trang 67 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Gieo hai con xúc xắc cân đối.

a) Xác suất để có đúng 1 con xúc xắc xuất hiện mặt 6 chấm là:

A. \(\frac{{11}}{{36}}\).               B. \(\frac{1}{3}\).                C. \(\frac{5}{{18}}\).                      D.\(\frac{4}{9}\).

b) Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc

bằng 7 là:

A. \(\frac{{11}}{{36}}\).               B. \(\frac{7}{{12}}\).                      C. \(\frac{5}{{11}}\).                      D.\(\frac{4}{9}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

Ta có \(n\left( \Omega  \right) = 6.6 = 36\).

a) Gọi A là biến cố “có đúng một con xúc xắc xuất hiện mặt 6 chấm”.

Thực hiện hai công đoạn:

+ Chọn một trong hai con xúc xắc xuất hiện mặt 6 chấm: có 2 cách

+ Xúc xắc còn lại có 5 cách xuất hiện số chấm (trừ mặt 6 chấm).

 Suy ra \(n\left( A \right) = 2.5 = 10\).

Vậy  \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{10}}{{36}} = \frac{5}{{18}}\)

Chọn C

b) Gọi A là biến cố “tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 7”.

Số chấm xuất hiện trên 2 xúc xắc có thể là

 \(\begin{array}{l}\left( {1;1} \right),\left( {1;2} \right),\left( {1;3} \right),\left( {1;4} \right),\left( {1;5} \right),\left( {1;6} \right),\\\left( {2;1} \right),\left( {2;2} \right),\left( {2;3} \right),\left( {2;4} \right),\left( {2;5} \right),\\\left( {3;1} \right),\left( {3;2} \right),\left( {3;3} \right),\left( {3;4} \right),\\\left( {4;1} \right),\left( {4;2} \right),\left( {4;3} \right),\\\left( {5;1} \right),\left( {5;2} \right),\\\left( {6;1} \right)\end{array}\)

Suy ra \(n\left( A \right) = 6 + 5 + 4 + 3 + 2 + 1 = 21\).

Vậy  \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).

Chọn B

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved