SBT Toán 8 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 9.22 - Mục Bài tập trang 56

1. Nội dung câu hỏi

Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các tia đối của tia AB và AC sao cho \(\widehat {APQ} = \widehat {ACB}\). Chứng minh rằng:

a) \(AP.AB = AQ.AC\)

b) $\Delta APC\backsim \Delta AQB$

 

2. Phương pháp giải

a) Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc): Nếu hai góc của tam giác lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

b) Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – góc – cạnh): Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

 

3. Lời giải chi tiết

a) Tam giác APQ và tam giác ACB có:

\(\widehat {PAQ} = \widehat {BAC}\) (hai góc đối đỉnh), \(\widehat {APQ} = \widehat {ACB}\) (gt)

Do đó, $\Delta APQ\backsim \Delta ACB\left( g-g \right)$ nên \(\frac{{AP}}{{AC}} = \frac{{AQ}}{{AB}}\)

Suy ra: \(AP.AB = AQ.AC\)

b) Vì \(\frac{{AP}}{{AC}} = \frac{{AQ}}{{AB}}\) nên \(\frac{{AP}}{{AQ}} = \frac{{AC}}{{AB}}\)

Tam giác APC và tam giác AQB có:

\(\widehat {PAC} = \widehat {BAQ}\) (hai góc đối đỉnh), \(\frac{{AP}}{{AQ}} = \frac{{AC}}{{AB}}\) (cmt)

Do đó, $\Delta APC\backsim \Delta AQB\left( c-g-c \right)$

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved