1. Nội dung câu hỏi
Cho \(f\left( x \right) = x{e^{ - \frac{{{x^2}}}{2}}}\). Tập nghiệm của phương trình \(f'\left( x \right) = 0\) là
A. \(\left\{ 1 \right\}\).
B. \(\left\{ { - 1} \right\}\).
C. \(\left\{ {0\,;\,1} \right\}\).
D. \(\left\{ { - 1\,;\,1} \right\}\).
2. Phương pháp giải
Áp dụng quy tắc tính đạo hàm của hàm số.
3. Lời giải chi tiết
\(f'(x) = {\left( {x.{e^{ - \frac{{{x^2}}}{2}}}} \right)^\prime } \Rightarrow f'(x) = {e^{ - \frac{{{x^2}}}{2}}} + x\left( { - x} \right){e^{ - \frac{{{x^2}}}{2}}} = {e^{ - \frac{{{x^2}}}{2}}}\left( {1 - {x^2}} \right)\)
\(f'(x) = 0 \Leftrightarrow {e^{ - \frac{{{x^2}}}{2}}}\left( {1 - {x^2}} \right) = 0 \Leftrightarrow 1 - {x^2} = 0 \Leftrightarrow x = \pm 1\).
Chuyên đề I. Phép biến hình phẳng
Bài 9. Nhìn, nghe, phát hiện địch, chỉ mục tiêu, truyền tin liên lạc, báo cáo
Chuyên đề 1: Phép biến hình trong mặt phẳng
Unit 3: Global warming & Ecological systems
Chủ đề 7: Chiến thuật thi đấu đơn
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11