Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
Bài tập cuối chương IX
Bài 32. Quan hệ giữa đường vuông góc và đường xiên
Luyện tập chung trang 70
Luyện tập chung trang 82
Bài 33. Quan hệ giữa ba cạnh của một tam giác
Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
Đề bài
Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng
a)\(AI < \dfrac{1}{2}\left( {AB + AC} \right)\)
b)\(AM < \dfrac{1}{2}\left( {AB + AC} \right)\)
Phương pháp giải - Xem chi tiết
a) Sử dụng mối liên hệ giữa đường vuông góc và đường xiên, chứng minh AI < AB, AI < AC.
b) Lấy D sao cho M là trung điểm của AD
-Chứng minh AB = CD
-Áp dụng bất đẳng thức tam giác cho tam giác ACD.
Lời giải chi tiết
a)
AI là đường vuông góc kẻ từ A xuống đoạn thẳng BC.
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}AI < AB\\AI < AC\end{array} \right.\\ \Rightarrow 2AI < AB + AC\\ \Rightarrow AI < \dfrac{1}{2}\left( {AB + AC} \right)\end{array}\) (đường vuông góc nhỏ hơn đường xiên)
b)
Lấy D sao cho M là trung điểm của AD
Xét \(\Delta ABM\) và \(DCM\) có
AM = DM ( do M là trung điểm của AD)
BM = CM ( do M là trung điểm của BC)
\(\widehat {AMB} = \widehat {CMD}\)( 2 góc đối đỉnh)
\( \Rightarrow \Delta ABM = \Delta DCM\left( {c - g - c} \right)\)
\( \Rightarrow AB = CD\)(2 cạnh tương ứng)
Xét \(\Delta ADC\) ta có: AD < AC + CD (bất đẳng thức tam giác)
\( \Rightarrow \) 2AM < AC + AB
\( \Rightarrow \) AM < \(\dfrac{1}{2}\)(AB + AC)
Bài 6
HỌC KÌ 1
Chủ đề 5. Ánh sáng
Bài 8: Trải nghiệm để trưởng thành
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Khoa học tự nhiên lớp 7
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7