1. Nội dung câu hỏi
Chuyển động của một vật có phương trình \(s = 5 + {\rm{sin}}\left( {0,8\pi t + \frac{\pi }{6}} \right)\), ở đó tính bằng centimét và thời gian tính bằng giây. Tại các thời điểm vận tốc bằng 0, giá trị tuyệt đối của gia tốc của vật gần với giá trị nào sau đây nhất?
A. \(4,5\,{\rm{cm/}}{{\rm{s}}^2}\).
B. \(5,5\,{\rm{cm/}}{{\rm{s}}^2}\).
C. \(6,3\,{\rm{cm/}}{{\rm{s}}^2}\).
D. \(7,1\,{\rm{cm/}}{{\rm{s}}^2}\).
2. Phương pháp giải
\(v(t) = s'(t) = 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
\(a(t) = s''(t) = - {\left( {0,8\pi } \right)^2}.\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Cho vận tốc bằng 0 suy ra \(\cos \left( {0,8\pi t + \frac{\pi }{6}} \right) \Rightarrow \sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\).
Khi đó giá trị tuyệt đối của gia tốc của vật \(\left| {a(t)} \right| = {\left( {0,8\pi } \right)^2}.\left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right|\).
3. Lời giải chi tiết
\(v(t) = s'(t) = 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
\(a(t) = s''(t) = - {\left( {0,8\pi } \right)^2}.\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Vận tốc bằng 0\( \Rightarrow 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right) = 0 \Leftrightarrow \cos \left( {0,8\pi t + \frac{\pi }{6}} \right) = 0 \Rightarrow \left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right| = 1\)
Khi đó giá trị tuyệt đối của gia tốc của vật \(\left| {a(t)} \right| = {\left( {0,8\pi } \right)^2}.\left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right| = {\left( {0,8\pi } \right)^2}.1 \approx 6,3\).
Chủ đề 8: Một số quyền dân chủ cơ bản của công dân
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam
Tải 20 đề kiểm tra 15 phút - Chương 4
PHẦN HAI: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI
Chủ đề 3: Kĩ thuật bỏ nhỏ và chiến thuật phân chia khu vực đánh cầu
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11