Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Chứng minh các đẳng thức:
LG câu a
LG câu a
\(\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } = \sqrt 6 \)
Phương pháp giải:
Áp dụng hằng đẳng thức:
\({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
\({\left( {\sqrt A } \right)^2} = A\) với (\(A \ge 0\))
Lời giải chi tiết:
Ta có: \(4 > 3 \Rightarrow \sqrt 4 > \sqrt 3 \Rightarrow 2 > \sqrt 3 > 0\)
Suy ra: \(\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } > 0\)
Ta có:
\({\left( {\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } } \right)^2}\)\( = 2 + \sqrt 3 + 2\sqrt {2 + \sqrt 3 } .\sqrt {2 - \sqrt 3 } + 2 - \sqrt 3 \)
\( = 4 + 2\sqrt {4 - 3} = 4 + 2\sqrt 1 = 4 + 2 = 6\)
\({\left( {\sqrt 6 } \right)^2} = 6\)
Vì \({\left( {\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } } \right)^2} = {\left( {\sqrt 6 } \right)^2}\) nên \(\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } = \sqrt 6 \)
LG câu b
LG câu b
\(\sqrt {\dfrac{4}{{{{\left( {2 - \sqrt 5 } \right)}^2}}}} - \sqrt {\dfrac{4}{{{{\left( {2 + \sqrt 5 } \right)}^2}}}} = 8\)
Phương pháp giải:
Áp dụng
Với \(A \ge 0;B > 0\)
\(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt A }}{{\sqrt B }}\)
\(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) suy ra \(\left| A \right| = A\)
Với \(A < 0\) suy ra \(\left| A \right| =- A\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
\sqrt {\dfrac{4}{{{{\left( {2 - \sqrt 5 } \right)}^2}}}} - \sqrt {\dfrac{4}{{{{\left( {2 + \sqrt 5 } \right)}^2}}}} \\
= \dfrac{{\sqrt 4 }}{{\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} }} - \dfrac{{\sqrt 4 }}{{\sqrt {{{\left( {2 + \sqrt 5 } \right)}^2}} }}\\
= \dfrac{2}{{\left| {2 - \sqrt 5 } \right|}} - \dfrac{2}{{\left| {2 + \sqrt 5 } \right|}}
\end{array}\)
Do \(\sqrt 5 > 2\) nên
\(\begin{array}{l}
\dfrac{2}{{\left| {2 - \sqrt 5 } \right|}} - \dfrac{2}{{\left| {2 + \sqrt 5 } \right|}}\\
= \dfrac{2}{{\sqrt 5 - 2}} - \dfrac{2}{{2 + \sqrt 5 }}\\
= \dfrac{{2(2 + \sqrt 5 ) - 2\left( {\sqrt 5 - 2} \right)}}{{(\sqrt 5 - 2)(\sqrt 5 + 2)}}\\= \dfrac{{4 + 2\sqrt 5 - 2 {\sqrt 5 + 4}}}{{5-4}}\\
= \dfrac{8}{1} = 8
\end{array}\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
CHƯƠNG I. ĐIỆN HỌC
CHƯƠNG V. DI TRUYỀN HỌC NGƯỜI
Đề thi học kì 2 mới nhất có lời giải
Đề thi học kì 2
SỰ PHÂN HÓA LÃNH THỔ