1.
1.
Phát biểu nào sau đây là sai?
Nếu ad = bc (với \(a, b, c, d \ne 0\)) thì:
A.\(\dfrac{a}{b} = \dfrac{c}{d}\) | B.\(\dfrac{a}{c} = \dfrac{b}{d}\) | C.\(\dfrac{d}{b} = \dfrac{c}{a}\) | D.\(\dfrac{d}{a} = \dfrac{b}{c}\) |
Phương pháp giải:
Tính chất của tỉ lệ thức.
Lời giải chi tiết:
Nếu ad = bc thì \(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a}\); \(\dfrac{d}{c} = \dfrac{b}{a}\)
Chọn D
2.
2.
Cho dãy tỉ số bằng nhau . Phát biểu nào sau đây là đúng?
A.\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c - e}}{{b - d + f}}\) | B. \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a - c + e}}{{b + d - f}}\) |
C. \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a - e}}{{b - f}}\) | D. \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c}}{{b + f}}\) |
Phương pháp giải:
Tính chất của dãy tỉ số bằng nhau.
Lời giải chi tiết:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a - e}}{{b - f}}\)
Chọn C
3.
3.
Cho đại lượng y liên hệ với đại lượng x theo công thức \(y = \dfrac{2}{3}x\). Gọi \({x_1};{x_2};{x_3}\) lần lượt là các giá trị khác nhau của x; \({y_1};{y_2};{y_3}\) lần lượt là các giá trị tương ứng của y. Phát biểu nào sau đây sai?
A.y tỉ lệ thuận với x theo hệ số tỉ lệ \(\dfrac{2}{3}\)
B. x tỉ lệ thuận với y theo hệ số tỉ lệ \(\dfrac{2}{3}\)
C.\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = \dfrac{2}{3}\)
D. \(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = \dfrac{3}{2}\)
Phương pháp giải:
Định nghĩa 2 đại lượng tỉ lệ thuận
Lời giải chi tiết:
\(y = \dfrac{2}{3}x\) nên x tỉ lệ thuận với y theo hệ số tỉ lệ \(\dfrac{2}{3}\).
Chọn B
4.
4.
Cho đại lượng y liên hệ với đại lượng x theo công thức \(y = \dfrac{{12}}{x}\). Gọi \({x_1};{x_2};{x_3}\) lần lượt là các giá trị khác nhau của x, \({y_1};{y_2};{y_3}\) lần lượt là các giá trị tương ứng của y. Phát biểu nào sau đây đúng?
A. Ta có: \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = 12\).
B. Hai đại lượng x và y tỉ lệ thuận với nhau.
C.\(\dfrac{{{y_1}}}{{{y_2}}} = \dfrac{{{x_1}}}{{{x_2}}};\dfrac{{{y_1}}}{{{y_3}}} = \dfrac{{{x_1}}}{{{x_3}}};\dfrac{{{y_2}}}{{{y_3}}} = \dfrac{{{x_2}}}{{{x_3}}}\)
D.\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}}\)
Phương pháp giải:
Định nghĩa và tính chất 2 đại lượng tỉ lệ nghịch
Lời giải chi tiết:
Vì \(y = \dfrac{{12}}{x}\) nên \(x.y=12\). Do đó, x và y là 2 đại lượng tỉ lệ nghịch.
Do đó, \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = 12\).
Chọn A
5.
5.
Quan hệ của các đại lượng nào sau đây là quan hệ tỉ lệ thuận?
A. Vận tốc trung bình của ô tô và thời gian chuyển động của ô tô trên một quãng đường cố định.
B. Số người và số ngày khi thực hiện một lượng công việc không đổi và năng suất lao động của mỗi người như nhau.
C. Quãng đường đi được và thời gian chuyển động của vật chuyển động đều.
D. Chiều rộng và chiều dài của hình chữ nhật có diện tích không đổi.
Phương pháp giải:
Nhận biết 2 đại lượng tỉ lệ thuận.
Lời giải chi tiết:
Vì vận tốc của vật chuyển động đều là không đổi nên quãng đường đi được và thời gian chuyển động của vật chuyển động đều.
Chọn C
6.
6.
Cho x tỉ lệ thuận với y theo hệ số tỉ lệ 2 và y tỉ lệ nghịch với z theo hệ số tỉ lệ 8. Phát biểu nào sau đây là đúng?
A. x tỉ lệ nghịch với z theo hệ số tỉ lệ 16
B. x tỉ lệ nghịch với z theo hệ số tỉ lệ 4
C. x tỉ lệ thuận với z theo hệ số tỉ lệ 16
D. x tỉ lệ thuận với z theo hệ số tỉ lệ 4.
Phương pháp giải:
Nếu x tỉ lệ thuận với y theo hệ số tỉ lệ k thì x = k.y
Nếu y tỉ lệ nghịch với z theo hệ số tỉ lệ m thì y . z = m
Biểu diễn đại lượng x và z rồi kết luận.
Lời giải chi tiết:
Vì x tỉ lệ thuận với y theo hệ số tỉ lệ 2 thì x = 2.y
Vì y tỉ lệ nghịch với z theo hệ số tỉ lệ 4 thì y . z = 8 hay \(y = \dfrac{8}{z}\)
Do đó, \(x = 2.\dfrac{8}{z}=\dfrac{16}{z}\) nên x tỉ lệ nghịch với z theo hệ số tỉ lệ là 16.
Chọn A
Đề thi, đề kiểm tra Tiếng Anh - Global Success
Unit 2: Healthy Living
Soạn Văn 7 Chân trời sáng tạo tập 2 - chi tiết
Chủ đề 2: Em đang trưởng thành
Bài 2. Bài học cuộc sống
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7