SBT Toán 11 - Chân trời sáng tạo tập 1

Trả lời câu hỏi - Mục câu hỏi trắc nghiệm trang 160

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 1
Câu 2
Câu 3
Câu 4
Câu 5
Câu 6
Câu 7
Câu 8
Câu 9
Câu 10
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 1
Câu 2
Câu 3
Câu 4
Câu 5
Câu 6
Câu 7
Câu 8
Câu 9
Câu 10

Câu 1

1. Nội dung câu hỏi

Trả lời các câu hỏi 1- 5 dựa trên đồ thị thể hiện điểm thi đánh giá năng lực của một trường đại học vào năm 2020 dưới đây.

 

Tổng số học sinh tham gia kì thi đánh giá năng lực trên là

A. 780.

B. 787.

C. 696.

D. 697.


2. Phương pháp giải

Để tính tổng số học sinh tham gia kì thi, đếm xem mỗi khoảng điểm có bao nhiêu học sinh tham gia, rồi cộng tổng lại.

 

3. Lời giải chi tiết 

Tổng số học sinh tham gia kì thi đánh giá năng lực là:

\(1 + 8 + 24 + 54 + 95 + 95 + 133 + 122 + 104 + 62 + 55 + 21 + 12 + 1 = 787\) (học sinh)

Chọn B.

Câu 2

1. Nội dung câu hỏi

Trả lời các câu hỏi 1- 5 dựa trên đồ thị thể hiện điểm thi đánh giá năng lực của một trường đại học vào năm 2020 dưới đây.

 

Giá trị đại diện cho nhóm chứa mốt của mẫu số liệu ghép nhóm trên là

A. 625,5.

B. 675,5.

C. 725,5.

D. 775,5.

2. Phương pháp giải

+ Sử dụng kiến thức về giá trị đại diện của mẫu số liệu ghép nhóm để tính: Giá trị chính giữa của mỗi nhóm được dùng làm giá trị đại diện cho nhóm ấy. Ví dụ nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).

+ Sử dụng kiến thức về nhóm chứa một của mẫu số liệu để tính: Nhóm chứa mốt của mẫu số liệu ghép nhóm là nhóm có tần số lớn nhất.

 

3. Lời giải chi tiết 

Bảng số liệu ghép nhóm hiệu chỉnh:

Nhóm chứa mốt của mẫu số liệu ghép nhóm là \(\left[ {650,5;700,5} \right)\).

Giá trị đại diện của nhóm \(\left[ {650,5;700,5} \right)\) là: \(\frac{1}{2}\left( {650,5 + 700,5} \right) = 675,5\)

Chọn B.

Câu 3

1. Nội dung câu hỏi

Trả lời các câu hỏi 1- 5 dựa trên đồ thị thể hiện điểm thi đánh giá năng lực của một trường đại học vào năm 2020 dưới đây.

 

Giá trị đại diện cho nhóm chứa trung vị của mẫu số liệu ghép nhóm trên là

A. 625,5.

B. 675,5.

C. 725,5.

D. 775,5.

 

2. Phương pháp giải

+ Sử dụng kiến thức về giá trị đại diện của mẫu số liệu ghép nhóm để tính: Giá trị chính giữa của mỗi nhóm được dùng làm giá trị đại diện cho nhóm ấy. Ví dụ nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).

+ Để tìm nhóm chứa trung vị, ta đi tìm trung vị của mẫu số liệu rồi xét xem trung vị đó thuộc nhóm nào của bảng số liệu.

 

3. Lời giải chi tiết 

Bảng số liệu ghép nhóm hiệu chỉnh:

Gọi \({x_1},{x_2},...,{x_{787}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Vì \(n = 787\) nên trung vị của mẫu số liệu là \({x_{394}}\). Do đó trung vị của mẫu số liệu thuộc nhóm \(\left[ {650,5;700,5} \right)\).

Giá trị đại diện của nhóm \(\left[ {650,5;700,5} \right)\) là: \(\frac{1}{2}\left( {650,5 + 700,5} \right) = 675,5\)

Chọn B

Câu 4

1. Nội dung câu hỏi

Trả lời các câu hỏi 1- 5 dựa trên đồ thị thể hiện điểm thi đánh giá năng lực của một trường đại học vào năm 2020 dưới đây.

 

Giá trị đại diện cho nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là

A. 625,5.

B. 675,5.

C. 725,5.

D. 775,5.


2. Phương pháp giải

+ Sử dụng kiến thức về giá trị đại diện của mẫu số liệu ghép nhóm để tính: Giá trị chính giữa của mỗi nhóm được dùng làm giá trị đại diện cho nhóm ấy. Ví dụ nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).

+ Để tìm nhóm chứa tứ phân vị thứ nhất, ta đi tìm tứ phân vị thứ nhất rồi xét xem t tứ phân vị thứ nhất thuộc nhóm nào của bảng số liệu.

 

3. Lời giải chi tiết 

Bảng số liệu ghép nhóm hiệu chỉnh:

Gọi \({x_1},{x_2},...,{x_{787}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu là \({x_{197}}\). Do đó trung vị của mẫu số liệu thuộc nhóm \(\left[ {600,5;650,5} \right)\).

Giá trị đại diện của nhóm \(\left[ {600,5;650,5} \right)\) là: \(\frac{1}{2}\left( {600,5 + 650,5} \right) = 625,5\)

Chọn A

Câu 5

1. Nội dung câu hỏi

Trả lời các câu hỏi 1- 5 dựa trên đồ thị thể hiện điểm thi đánh giá năng lực của một trường đại học vào năm 2020 dưới đây.

 

Giá trị đại diện cho nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là

A. 625,5.

B. 675,5.

C. 725,5.

D. 775,5.


2. Phương pháp giải

+ Sử dụng kiến thức về giá trị đại diện của mẫu số liệu ghép nhóm để tính: Giá trị chính giữa của mỗi nhóm được dùng làm giá trị đại diện cho nhóm ấy. Ví dụ nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).

+ Để tìm nhóm chứa tứ phân vị thứ ba, ta đi tìm tứ phân vị thứ ba rồi xét xem tứ phân vị thứ ba thuộc nhóm nào của bảng số liệu.

 

3. Lời giải chi tiết 

Bảng số liệu ghép nhóm hiệu chỉnh:

Gọi \({x_1},{x_2},...,{x_{787}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Tứ phân vị thứ ba của mẫu số liệu là \({x_{591}}\). Do đó trung vị của mẫu số liệu thuộc nhóm \(\left[ {750,5;800,5} \right)\).

Giá trị đại diện của nhóm \(\left[ {750,5;800,5} \right)\) là: \(\frac{1}{2}\left( {750,5 + 800,5} \right) = 775,5\)

Chọn D

Câu 6

1. Nội dung câu hỏi

Trả lời các câu hỏi 6-10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

160,5 là giá trị đại diện cho nhóm

A. 2.

B. 3.

C. 4.

D. 5.


2. Phương pháp giải

Sử dụng kiến thức về giá trị đại diện của mẫu số liệu ghép nhóm để tính: Giá trị chính giữa của mỗi nhóm được dùng làm giá trị đại diện cho nhóm ấy. Ví dụ nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).  

 

3. Lời giải chi tiết 

Giá trị đại diện của nhóm \(\left[ {159;162} \right)\) là: \(\frac{1}{2}\left( {159 + 162} \right) = 160,5\)

Vậy 160,5 là giá trị đại diện cho nhóm 4.

Chọn C.

Câu 7

1. Nội dung câu hỏi

Trả lời các câu hỏi 6-10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

Mốt của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là

A. 157,76.

B. 158,25.

C. 157,5.

D. 160,28.


2. Phương pháp giải

Sử dụng kiến thức về mốt của mẫu số liệu để tính: Giả sử nhóm chứa mốt là \(\left[ {{u_m};{u_{m + 1}}} \right)\), khi đó mốt của mẫu số liệu ghép nhóm, kí hiệu là \({M_O}\) được xác định bởi công thức: \({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

 

3. Lời giải chi tiết 

Nhóm chứa mốt của mẫu số liệu là nhóm \(\left[ {156;159} \right)\).

Do đó, \({u_m} = 156,{n_{m - 1}} = 13,{n_m} = 40,{n_{m + 1}} = 21,{u_{m + 1}} = 159\)

Mốt của mẫu số liệu trên là:

\({M_O} = 156 + \frac{{40 - 13}}{{\left( {40 - 13} \right) + \left( {40 - 21} \right)}}.\left( {159 - 156} \right) \approx 157,76\)

Chọn A.

Câu 8

1. Nội dung câu hỏi

Trả lời các câu hỏi 6-10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

Trung vị của mẫu số liệu ghép nhóm trên là

A. 157,76.

B. 157,25.

C. 158,25.

D. 160,45.


2. Phương pháp giải

Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:

Gọi n là cỡ mẫu.

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,

\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).

 

3. Lời giải chi tiết 

Gọi \({x_1},{x_2},...,{x_{100}}\) là mẫu số liệu được xếp theo thứ tự không giảm

Do cỡ mẫu \(n = 100\) nên trung vị của mẫu số liệu là \(\frac{{{x_{50}} + {x_{51}}}}{2}\). Do đó trung vị của mẫu số liệu thuộc nhóm \(\left[ {156;159} \right)\).

Trung vị của mẫu số liệu ghép nhóm là: \({M_e} = 156 + \frac{{\frac{{100}}{2} - \left( {7 + 13} \right)}}{{40}}.\left( {159 - 156} \right) = 158,25\)

Chọn C.

Câu 9

1. Nội dung câu hỏi

Trả lời các câu hỏi 6-10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là

A. 156,25.

B. 157,5.

C. 156,38.

D. 157,54.


2. Phương pháp giải

Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính: Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).

 

3. Lời giải chi tiết 

Gọi \({x_1},{x_2},...,{x_{100}}\) là mẫu số liệu được xếp theo thứ tự không giảm

Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_{25}} + {x_{26}}}}{2}\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {156;159} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 156 + \frac{{\frac{{100}}{4} - \left( {7 + 13} \right)}}{{40}}.\left( {159 - 156} \right) = 156,375 \approx 156,38\)

Chọn C.

Câu 10

1. Nội dung câu hỏi

Trả lời các câu hỏi 6-10 dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng phần trăm) là

A. 160,52.

B. 161,52.

C. 161,14.

D. 162,25.


2. Phương pháp giải

Sử dụng kiến thức về tứ phân vị của mẫu số liệu ghép nhóm để tính: Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)

Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)

 

3. Lời giải chi tiết 

Gọi \({x_1},{x_2},...,{x_{100}}\) là mẫu số liệu được xếp theo thứ tự không giảm

Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{{{x_{75}} + {x_{76}}}}{2}\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {159;162} \right)\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 159 + \frac{{\frac{{3.100}}{4} - \left( {7 + 13 + 40} \right)}}{{21}}.\left( {162 - 159} \right) \approx 161,14\)

Chọn C.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved