Chọn một phương án đúng trong mỗi câu sau:
Câu 1
1. Nội dung câu hỏi
Trong các đẳng thức sau, cái nào là hằng đẳng thức
A.\(a\left( {a + 1} \right) = a + 1\)
B.\({a^2} - 1 = a\).
C.\(\left( {a + b} \right)\left( {a - b} \right) = {a^2} + {b^2}\)
D.\(\left( {a + 1} \right)\left( {a + 2} \right) = {a^2} + 3a + 2\).
2. Phương pháp giải
Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.
3. Lời giải chi tiết
Ta có: \(\;\left( {a + 1} \right)\left( {a + 2} \right) = {a^2}\; + 2a + a + 2 = {a^2}\; + 3a + 2.\)
Do đó đẳng thức trên là một đẳng thức.
Các đẳng thức còn lại, khi thay một giá trị a, b bất kì vào hai vế ta được kết quả không bằng nhau nên không phải là hằng đẳng thức.
Chọn đáp án D.
Câu 2
1. Nội dung câu hỏi
Đa thức \({x^3} - 8\) được phân tích thành tích của hai đa thức
A.\(x - 2\) và \({x^2} - 2x - 4\)
B. \(x - 2\) và \({x^2} + 2x - 4\)
C. \(x - 2\) và \({x^2} + 2x + 4\)
D. \(x - 2\) và \({x^2} - 2x + 4\)
2. Phương pháp giải
Sử dụng hằng đẳng thức
\({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).
3. Lời giải chi tiết
Ta có: \({x^3}\;-8 = {x^3} - {2^3}\; = \left( {x - 2} \right)({x^2}\; + 2x + 4).\)
Chọn đáp án C.
Câu 3
1. Nội dung câu hỏi
Biểu thức \({x^2} + x + \frac{1}{4}\) viết được dưới dạng bình phương của một tổng là
A.\({\left[ {x + \left( { - \frac{1}{2}} \right)} \right]^2}\).
B.\({\left( {x + \frac{1}{2}} \right)^2}\).
C.\({\left( {2x + \frac{1}{2}} \right)^2}\)
D.\({\left( {\frac{1}{2}x + 1} \right)^2}\)
2. Phương pháp giải
Sử dụng hằng đẳng thức
\({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\).
3. Lời giải chi tiết
Ta có: \({x^2} + x + \frac{1}{4} = {x^2} + 2.x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} = {\left( {x + \frac{1}{2}} \right)^2}\).
Chọn đáp án B.
Câu 4
1. Nội dung câu hỏi
Khẳng định nào sau đây là đúng?
A. \(\left( {A - B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
B. \(\left( {A + B} \right)\left( {{A^2} + AB + {B^2}} \right) = {A^3} + {B^3}\).
C. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
D. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} + {B^3}\).
2. Phương pháp giải
Ta sử dụng các hằng đẳng thức:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
3. Lời giải chi tiết
Ta có:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
Chọn đáp án D.
Câu 5
1. Nội dung câu hỏi
Rút gọn biểu thức \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\) ta được
A. 5.
B. 4.
C. 3.
D. -3.
2. Phương pháp giải
Sử dụng hằng đẳng thức
\({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)
Sử dụng tính chất giao hoán, kết hợp thu gọn các đơn thức đồng dạng với nhau.
3. Lời giải chi tiết
Ta có: \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\)
\( = {x^2}\; - 1 - ({x^2}\; - {2^2}) = \;{x^2} - 1 - {x^2}\; + 4 = 3\).
Chọn đáp án C.
Presentation skills
Bài 11. Dân cư và đặc điểm kinh tế khu vực Nam Á
Bài 20. Khí hậu và cảnh quan trên Trái Đất
Đề kiểm tra giữa học kì 1
Chủ đề 1. Em với nhà trường
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8