Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Đề bài
Câu 1: Thực hiện phép tính
\(a)\,\,2{x^2}\left( {x - 2} \right) + 3x\left( {{x^2} - x - 2} \right) \)\(- 5\left( {3 - {x^2}} \right)\)
\(b)\,\,\left( {x - 1} \right)\left( {x - 3} \right) - \left( {4 - x} \right)\left( {2x + 1} \right) \)\(- 3{x^2} + 2x - 5\)
Câu 2: Rút gọn biểu thức
\(a)\,\,\left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)\)\(.\left( {{x^4} + {y^4}} \right)\)
\(b)\,\,\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right) - {\left( {x - 2} \right)^3} \)\(- 6\left( {x - 1} \right)\left( {x + 1} \right)\)
Câu 3: Phân tích các đa thức sau thành nhân tử
\(\begin{array}{l}a)\,\,3{x^3} - 3{x^2}y - 6{x^2} + 6xy\\b)\,\,4{x^2} - 20xy + 25 - {\left( {3x - 2} \right)^2}\\c)\,\,{x^2} - 6x + 5 + {\left( {x - 5} \right)^2}\end{array}\)
Câu 4: Thực hiện phép chia
\(\begin{array}{l}a)\,\,\left( {6{x^2} - 11x - 10} \right):\left( {3x + 2} \right)\\b)\,\,\left( {{x^4} + 2{x^3} + 10x - 25} \right):\left( {{x^2} + 5} \right)\end{array}\)
Lời giải chi tiết
Câu 1:
Phương pháp giải:
Bước 1: Thực hiện nhân đơn thức với đa thức.
Bước 2: Cộng trừ các đơn thức đồng dạng và rút gọn
Lời giải:
\(a)\,\,2{x^2}\left( {x - 2} \right) + 3x\left( {{x^2} - x - 2} \right) \)\(- 5\left( {3 - {x^2}} \right)\)
\( = 2{x^3} - 4{x^2} + 3{x^3} - 3{x^2}\)\( - 6x - 15 + 5{x^2}\)
\( = \left( {2{x^3} + 3{x^3}} \right) \)\(+ \left( { - 4{x^2} - 3{x^2} + 5{x^2}} \right) - 6x - 15\)
\( = 5{x^3} - 2{x^2} - 6x - 15\)
\(b)\,\,\left( {x - 1} \right)\left( {x - 3} \right) - \left( {4 - x} \right)\left( {2x + 1} \right) \)\(- 3{x^2} + 2x - 5\)
\(= {x^2} - 3x - x + 3 - \left( {8x + 4 - 2{x^2} - x} \right) \)\(- 3{x^2} + 2x - 5\)
\( = {x^2} - 3x - x + 3 - 8x - 4 + 2{x^2} \)\(+ x - 3{x^2} + 2x - 5\)
\( = - 9x - 6\)
Câu 2:
Phương pháp giải:
a) Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
b) Áp dụng quy tắc: Nhân đa thức với đa thức và các hằng đẳng thức sau đó thực hiện cộng trừ các đơn thức đồng dạng và rút gọn
Hằng đẳng thức:
\(\begin{array}{l}{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\\{\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\end{array}\)
Lời giải:
\(\begin{array}{l}a)\,\,\left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)\left( {{x^4} + {y^4}} \right)\\ = \left[ {\left( {x - y} \right)\left( {x + y} \right)} \right]\left( {{x^2} + {y^2}} \right)\left( {{x^4} + {y^4}} \right)\\ = \left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)\left( {{x^4} + {y^4}} \right)\\ = \left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right]\left( {{x^4} + {y^4}} \right)\\ = \left( {{x^4} - {y^4}} \right)\left( {{x^4} + {y^4}} \right)\\ = {x^8} - {y^8}\end{array}\)
\(b)\,\,\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right) - {\left( {x - 2} \right)^3} \)\(- 6\left( {x - 1} \right)\left( {x + 1} \right)\)
\(= {x^3} + 2{x^2} + 4x + 2{x^2} + 4x + 8 \)\(- \left( {{x^3} - 3{x^2}.2 + 3x{{.2}^2} - {2^3}} \right) \)\(- 6\left( {{x^2} - {1^2}} \right)\)
\( = {x^3} + 2{x^2} + 4x + 2{x^2} + 4x + 8 \)\(- {x^3} + 6{x^2} - 12x + 8 - 6{x^2} + 6\)
\( = 4{x^2} - 4x + 22\)
Câu 3:
Phương pháp giải:
a) Sử dụng phương pháp nhóm và phương pháp đặt nhân tử chung.
b) Sử dụng phương pháp hằng đẳng thức.
Áp dụng các hằng đẳng thức:
\(\begin{array}{l}{\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\\{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\end{array}\)
c) Sử dụng phương pháp tách, nhóm, hằng đẳng thức và đặt nhân tử chung.
Lời giải:
\(\begin{array}{l}a)\,\,3{x^3} - 3{x^2}y - 6{x^2} + 6xy\\ = \left( {3{x^3} - 3{x^2}y} \right) + \left( { - 6{x^2} + 6xy} \right)\\ = 3{x^2}\left( {x - y} \right) - 6x\left( {x - y} \right)\\ = 3x\left( {x - y} \right)\left( {x - 2} \right)\end{array}\)
\(b)\,\,4{x^2} - 20xy + 25 - {\left( {3x - 2} \right)^2}\)
\( = \left( {4{x^2} - 20xy + 25} \right) - {\left( {3x - 2} \right)^2}\)
\( = \left[ {{{\left( {2x} \right)}^2} - 2.2x.5 + {5^2}} \right] \)\(- {\left( {3x - 2} \right)^2}\)
\( = {\left( {2x - 5} \right)^2} - {\left( {3x - 2} \right)^2}\)
\( = \left[ {\left( {2x - 5} \right) - \left( {3x - 2} \right)} \right]\)\(.\left[ {\left( {2x - 5} \right) + \left( {3x - 2} \right)} \right]\)
\( = \left( {2x - 5 - 3x + 2} \right)\)\(.\left( {2x - 5 + 3x - 2} \right)\)
\(= \left( { - x - 3} \right)\left( {5x - 7} \right)\)
\(\begin{array}{l} c)\,\,{x^2} - 6x + 5 + {\left( {x - 5} \right)^2}\\ = {x^2} - x - 5x + 5 + {\left( {x - 5} \right)^2}\\ = \left( {{x^2} - x} \right) + \left( { - 5x + 5} \right) + {\left( {x - 5} \right)^2}\\ = x\left( {x - 1} \right) - 5\left( {x - 1} \right) + {\left( {x - 5} \right)^2}\\ = \left( {x - 1} \right)\left( {x - 5} \right) + {\left( {x - 5} \right)^2}\\ = \left( {x - 5} \right)\left( {x - 1 + x - 5} \right)\\ = \left( {x - 5} \right)\left( {2x - 6} \right)\\ = 2\left( {x - 5} \right)\left( {x - 3} \right)\end{array}\)
Câu 4:
Phương pháp giải:
Áp dụng quy tắc chia đa thức một biến đã sắp xếp.
Lời giải:
Bài 6. Phòng, chống bạo lực gia đình
Unit 12: A Vacation Abroad - Kì nghỉ ở nước ngoài
Tải 10 đề kiểm tra 15 phút - Chương 10
Bài 36. Đặc điểm đất Việt Nam
Bài 1: Tự hào về truyền thống dân tộc Việt Nam
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8