Mục 1 trang 11 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lựa chọn câu hỏi để xem giải nhanh hơn
Khám phá 1
Thực hành 1
Vận dụng 1
Lựa chọn câu hỏi để xem giải nhanh hơn
Khám phá 1
Thực hành 1
Vận dụng 1

Khám phá 1

1. Nội dung câu hỏi

Quan sát các điểm được vẽ trên mặt phẳng tọa độ (Hình 1).

a) Có nhận xét gì về các vectơ \(\overrightarrow {AA'} ,\,\overrightarrow {BB'} ,\,...,\,\overrightarrow {EE'} \)

b) Có hay không phép biến hình biến các điểm A, B, C, D, E thành các điểm A’, B’, C’, D’, E’?

 

2. Phương pháp giải

Quan sát hình 1, nhận xét về hướng, độ dài của các vectơ

 

3. Lời giải chi tiết

a) Quan sát Hình 1, ta thấy các vectơ \(\overrightarrow {AA'} ,\,\overrightarrow {BB'} ,\,...,\,\overrightarrow {EE'} \) cùng hướng và có độ dài bằng nhau.

Vậy \(\overrightarrow {AA'}  = \overrightarrow {BB'}  = \overrightarrow {CC'}  = \overrightarrow {DD'}  = \overrightarrow {EE'} \)

b) Ta đặt \({\rm{\vec u}} = \overrightarrow {AA'}  = \overrightarrow {BB'}  = \overrightarrow {CC'}  = \overrightarrow {DD'}  = \overrightarrow {EE'} \)

Khi đó tồn tại phép biến hình biến điểm A thành điểm A’ sao cho \(\overrightarrow {AA'}  = {\rm{\vec u}}\)

Tương tự như vậy, ta thấy phép biến hình đó cũng biến các điểm B, C, D, E thành các điểm B’, C’, D’, E’ sao cho \(\overrightarrow {BB'}  = \overrightarrow {CC'}  = \overrightarrow {DD'}  = \overrightarrow {EE'}  = {\rm{\vec u}}\)

Vậy có phép biến hình biến các điểm A, B, C, D, E thành các điểm A’, B’, C’, D’, E’

Thực hành 1

1. Nội dung câu hỏi

Chứng minh phép đồng nhất là một phép tịnh tiến.

 

2. Phương pháp giải

Cho vectơ \(\overrightarrow u \), phép tịnh tiến theo vectơ \(\overrightarrow u \) là phép biến hình biến điểm M thành  điểm M’ sao cho \(\overrightarrow {MM'}  = \overrightarrow u \).

 

3. Lời giải chi tiết

Giả sử A’ là ảnh của A qua phép đồng nhất f. Tức là, A’ = f(A).

Suy ra \(A'{\rm{ }} \equiv {\rm{ }}A\) hay \(AA'{\rm{ }} = {\rm{ }}0.\)

Khi đó \(\overrightarrow {AA'}  = \vec 0\).

Tương tự như vậy, với mỗi điểm M bất kì, ta lấy điểm M’ là ảnh của điểm M qua phép đồng nhất f.

Khi đó ta cũng có \(\overrightarrow {MM'}  = \vec 0\).

Vậy phép đồng nhất là một phép tịnh tiến theo \(\vec 0\)

Vận dụng 1

1. Nội dung câu hỏi

Tìm độ dài vectơ tịnh tiến của phép tịnh tiến theo vectơ \({\rm{\vec v}}\) biến các điểm A, B, C, D, E thành A’, B’, C’, D’, E’ trong Hoạt động khám phá 1 (biết cạnh mỗi ô vuông là 1 đơn vị).

 

2. Phương pháp giải

Cho vectơ \(\overrightarrow u \), phép tịnh tiến theo vectơ \(\overrightarrow u \) là phép biến hình biến điểm M thành  điểm M’ sao cho \(\overrightarrow {MM'}  = \overrightarrow u \).

Nếu \(M'(x';y')\) là ảnh của \(M(x;y)\) qua phép tịnh tiến \({T_{\overrightarrow u }}\) , \(\overrightarrow u  = \left( {a;\,b} \right)\) thì biểu thức tọa độ của phép tịnh tiến là \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)

 

3. Lời giải chi tiết

Từ Hoạt động khám phá 1, ta có \({\rm{\vec u}} = \overrightarrow {AA'}  = \overrightarrow {BB'}  = \overrightarrow {CC'}  = \overrightarrow {DD'}  = \overrightarrow {EE'} \).

Ta đặt \({\rm{\vec v}} = {\rm{\vec u}}\)

Khi đó phép tịnh tiến theo \({\rm{\vec v}} = {\rm{\vec u}}\) biến các điểm A, B, C, D, E thành điểm A’, B’, C’, D’, E’.

Dựng \(\Delta AA'M\) vuông tại M (như hình vẽ).

Ta có \(AM{\rm{ }} = {\rm{ }}1\) (đơn vị), \(A'M{\rm{ }} = {\rm{ }}10\) (đơn vị) (do cạnh mỗi ô vuông là 1 đơn vị).

Suy ra \(AA' = \sqrt {A{M^2} + {\rm{A'}}{{\rm{M}}^2}}  = \sqrt {{1^2} + {{10}^2}}  = \sqrt {101} \).

Khi đó \(\left| {{\rm{\vec v}}} \right| = \left| {\overrightarrow {AA'} } \right| = AA' = \sqrt {101} \)

Vậy độ dài vectơ tịnh tiến của phép tịnh tiến theo vectơ \({\rm{\vec v}}\) là \(\sqrt {101} \).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved