Đề bài
Thực hành 1 trang 14
Ba vận động viên Hùng, Dũng và Mạnh tham gia thi đấu nội dung ba môn phối hợp: chạy, bơi và đạp xe, trong đó tốc độ trung bình của họ trên mỗi chặng đua được cho ở bảng dưới đây.
Biết tổng thời gian thi đấu ba môn phối hợp của Hùng là 1 giờ 1 phút 30 giây, của Dũng là 1 giờ 3 phút 40 giây và của Mạnh là 1 giờ 1 phút 55 giây. Tính cự li của mỗi chặng đua.
Lời giải chi tiết
Gọi cự li của mỗi chặng đua chạy, bơi và đạp xe là x,y,z (đơn vị km) (\(x,y,z > 0\))
Tổng thời gian thi đấu ba môn phối hợp của Hùng là 1 giờ 1 phút 30 giây = 1,025 giờ, nên ta có:
\(\frac{x}{{12,5}} + \frac{y}{{3,6}} + \frac{z}{{48}} = 1,025\)
Tổng thời gian thi đấu ba môn phối hợp của Dũng là 1 giờ 3 phút 40 giây = \(\frac{{191}}{{180}}\)giờ, nên ta có:
\(\frac{x}{{12}} + \frac{y}{{3,75}} + \frac{z}{{45}} = \frac{{191}}{{180}}\)
Tổng thời gian thi đấu ba môn phối hợp của Mạnh là 1 giờ 1 phút 55 giây = \(\frac{{743}}{{720}}\)giờ, nên ta có:
\(\frac{x}{{12,5}} + \frac{y}{4} + \frac{z}{{45}} = \frac{{743}}{{720}}\)
Từ đó ta có hệ phương trình bậc nhất ba ẩn
\(\left\{ \begin{array}{l}\frac{x}{{12,5}} + \frac{y}{{3,6}} + \frac{z}{{48}} = 1,025\\\frac{x}{{12}} + \frac{y}{{3,75}} + \frac{z}{{45}} = \frac{{191}}{{180}}\\\frac{x}{{12,5}} + \frac{y}{4} + \frac{z}{{45}} = \frac{{743}}{{720}}\end{array} \right.\)
Sử dụng máy tính cầm tay, ta được \(x = 5;y = 0,75;z = 20\)
Vậy cự li chạy là 5km, cự li bơi là 0,75km và cự li đạp xe là 20km.
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Lịch sử lớp 10
Đăm Săn đi bắt nữ thần mặt trời
Đề thi giữa kì 2
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
Bảo kính cảnh giới
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10