HĐ 1
Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\) (Hình 2)
a) Tìm tọa độ của hai tiêu điểm \({F_1},{F_2}\) của \(\left( E \right)\)
b) \(\left( E \right)\) cắt trục \(Ox\) tịa các điểm \({A_1},{A_2}\) và cắt trục \(Oy\) tịa các điểm \({B_1},{B_2}\). Tìm độ dài các đoạn thẳng \(O{A_2},O{B_2}\)
Phương pháp giải:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
+ 4 đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)
Lời giải chi tiết:
Elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\) có 4 đỉnh \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)
\( \Rightarrow O{A_2} = a;O{B_2} = b\)
HĐ 2
Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\)
Cho điểm \(M\left( {x;y} \right)\) nẳm trên \(\left( E \right)\) (Hình 3)
a) Gọi \({M_1}\) là điểm đối xứng của M qua trục Ox. Tìm tọa độ của điểm \({M_1}\). Điểm \({M_1}\) có nằm trên \(\left( E \right)\) hay không? Tại sao?
b) Gọi \({M_2}\) là điểm đối xứng của M qua trục Oy. Tìm tọa độ của điểm \({M_2}\). Điểm \({M_2}\) có nằm trên \(\left( E \right)\) hay không? Tại sao?
c) Gọi \({M_3}\) là điểm đối xứng của M qua gốc O. Tìm tọa độ của điểm \({M_3}\). Điểm \({M_3}\) có nằm trên \(\left( E \right)\) hay không? Tại sao?
Lời giải chi tiết:
a) Điểm \({M_1}\) là điểm đối xứng của M qua trục Ox, nên \({M_1}\left( {x; - y} \right)\)
\({M_1}\left( {x; - y} \right)\) thuộc Elip vì \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{{( - y)}^2}}}{{{b^2}}} = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
b) Điểm \({M_2}\) là điểm đối xứng của M qua trục Oy, nên \({M_2}\left( { - x;y} \right)\)
\({M_2}\left( { - x;y} \right)\) thuộc Elip vì \(\frac{{{{( - x)}^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
c) Điểm \({M_3}\) là điểm đối xứng của M qua gốc O, nên \({M_3}\left( { - x; - y} \right)\)
\({M_3}\left( { - x; - y} \right)\) thuộc Elip vì \(\frac{{{{( - x)}^2}}}{{{a^2}}} + \frac{{{{( - y)}^2}}}{{{b^2}}} = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
SBT VĂN 10 TÂP 2 KẾT NỐI TRI THỨC VỚI CUỘC SÓNG
Chủ đề 4: Chủ động, tự tin trong học tập và giao tiếp
Chương 13. Phát triển bền vững và tăng trưởng xanh
Unit 8. Making Plans
Bài 4. Phòng, chống vi phạm pháp luật về trật tự an toàn giao thông
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10