HĐ1
Cho elip có phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (H.3.1)
a) Tìm tọa độ các giao điểm của elip với các trục tọa độ
b) Hãy giải thích vì sao, nếu điểm \(M({x_0};{y_0})\) thuộc elip thì các điểm có tọa độ \(({x_0}; - {y_0}),( - {x_0};{y_0}),( - {x_0}; - {y_0})\) cũng thuộc Elip.
c) Với điểm \(M({x_0};{y_0})\) thuộc elip, hãy so sánh \(O{M^2}\) với \({a^2},{b^2}\)
Lời giải chi tiết:
a)
\(y = 0 \Rightarrow \frac{{{x^2}}}{{{a^2}}} = 1 \Rightarrow x = \pm a\)
Giao điểm của elip với Ox là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right).\)
\(x = 0 \Rightarrow \frac{{{y^2}}}{{{b^2}}} = 1 \Rightarrow y = \pm b\)
Giao điểm của elip với Oy là \({B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)
b) Nếu điểm \(M({x_0};{y_0})\) thuộc elip thì \(\frac{{{x_0}^2}}{{{a^2}}} + \frac{{{y_0}^2}}{{{b^2}}} = 1\)
\( \Rightarrow \frac{{{x_0}^2}}{{{a^2}}} + \frac{{{{( - {y_0})}^2}}}{{{b^2}}} = 1;\frac{{{{( - {x_0})}^2}}}{{{a^2}}} + \frac{{{y_0}^2}}{{{b^2}}} = 1;\frac{{{{( - {x_0})}^2}}}{{{a^2}}} + \frac{{{{( - {y_0})}^2}}}{{{b^2}}} = 1\)
hay các điểm có tọa độ \(({x_0}; - {y_0}),( - {x_0};{y_0}),( - {x_0}; - {y_0})\) cũng thuộc Elip.
c) Từ H.3.1 dễ thấy \(a > b\)
\(\begin{array}{l} \Rightarrow \frac{{{x_0}^2}}{{{a^2}}} + \frac{{{y_0}^2}}{{{a^2}}} \le \frac{{{x_0}^2}}{{{a^2}}} + \frac{{{y_0}^2}}{{{b^2}}} \le \frac{{{x_0}^2}}{{{b^2}}} + \frac{{{y_0}^2}}{{{b^2}}}\\ \Leftrightarrow \frac{{{x_0}^2}}{{{a^2}}} + \frac{{{y_0}^2}}{{{a^2}}} \le 1 \le \frac{{{x_0}^2}}{{{b^2}}} + \frac{{{y_0}^2}}{{{b^2}}}\\ \Leftrightarrow {b^2} \le {x_0}^2 + {y_0}^2 \le {a^2}\\ \Leftrightarrow {b^2} \le O{M^2} \le {a^2}\end{array}\)
Luyện tập 1
Viết phương trình chính tắc của elip với độ dài trục lớn bằng 10 và tiêu cự bằng 6.
Phương pháp giải:
Phương trình chính tắc của elip \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
Trong đó:
+ Độ dài trục lớn: \(2a\)
+ Tiêu cự: \(2c = 2\sqrt {{a^2} - {b^2}} \)
Lời giải chi tiết:
Ta có:
+ Độ dài trục lớn: \(2a = 10 \Rightarrow a = 5\)
+ Tiêu cự: \(2c = 2\sqrt {{a^2} - {b^2}} = 6 \Rightarrow \sqrt {{5^2} - {b^2}} = 3 \Rightarrow {b^2} = 16\)
Phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)
Luyện tập 2
(Phép co đường tròn) Cho đường tròn có phương trình \({x^2} + {y^2} = {a^2}\) và số k \((0 < k < 1)\). Với mỗi điểm \(M({x_0};{y_0})\) thuộc đường tròn, gọi \(H({x_0};0)\) là hình chiếu vuông góc của M lên trục Ox và N là điểm thuộc đoạn MH sao cho \(HN = kHM\) (H.3.5)
a) Tính tọa độ của N theo \({x_0};{y_0};k.\)
b) Chứng minh rằng khi điểm M thay đổi trên đường tròn thì N thay đổi trên Elip có phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{{(ka)}^2}}} = 1\)
Lời giải chi tiết:
Gọi \(N({x_N};{y_N})\).
N thuộc đoạn MH và \(HN = kHM \Rightarrow \overrightarrow {HN} = k\overrightarrow {HM} \)
\(\begin{array}{l} \Leftrightarrow ({x_N} - {x_0};{y_N}) = k(0;{y_0})\\ \Leftrightarrow \left\{ \begin{array}{l}{x_N} - {x_0} = k.0\\{y_N} = k.{y_0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_N} = {x_0}\\{y_N} = k.{y_0}\end{array} \right.\end{array}\)
Vì \(M({x_0};{y_0})\) thuộc (C) \({x^2} + {y^2} = {a^2}\) nên
\({x_0}^2 + {y_0}^2 = {a^2} \Leftrightarrow {x_N}^2 + {\left( {\frac{{{y_N}}}{k}} \right)^2} = {a^2} \Leftrightarrow \frac{{{x_N}^2}}{{{a^2}}} + \frac{{{y_N}^2}}{{{{(ka)}^2}}} = 1\)
Vậy N thuộc Elip có phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{{(ka)}^2}}} = 1\)
Bài 5. Bảo vệ an ninh quốc gia và bảo đảm trật tự, an toàn xã hội
Chủ đề 6. Một số nền văn minh trên đất nước Việt Nam (trước 1858)
Unit 2: Science and inventions
Thiết kế và công nghệ
SBT VĂN 10 TẬP 1 KẾT NỐI TRI THỨC VỚI CUỘC SỐNG
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10