Luyện tập chung trang 68
Luyện tập chung trang 85
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 12. Tổng các góc trong một tam giác
Bài tập cuối chương IV
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 74
Câu hỏi 1
Cho đường thẳng mn cắt đường thẳng xy và uv lần lượt tại hai điểm P và Q (H.3.17).Em hãy kể tên:
a) Hai cặp góc so le trong
b) Bốn cặp góc đồng vị.
Phương pháp giải:
Vẽ hình, nhận diện các cặp góc so le trong, đồng vị.
Lời giải chi tiết:
a) Hai cặp góc so le trong là: góc xPn và góc mQv; góc yPn và góc uQm
b) Bốn cặp góc đồng vị là: góc mPy và góc mQv; góc yPn và góc vQn; góc mPx và góc mQu; góc xPn và góc uQn.
HĐ 1
Trên Hình 3.18, cho biết hai góc so le trong A1 và B3 bằng nhau và bằng \(60^\circ \).
Hãy tính và so sánh hai góc so le trong còn lại A2 và B4.
Phương pháp giải:
Sử dụng tính chất 2 góc kề bù: Tổng 2 góc kề bù bằng 180 độ
Lời giải chi tiết:
+) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)
\(\begin{array}{l} \Rightarrow 60^\circ + \widehat {{A_2}} = 180^\circ \\ \Rightarrow \widehat {{A_2}} = 180^\circ - 60^\circ = 120^\circ \end{array}\)
+) Vì \(\widehat {{B_3}} + \widehat {{B_4}} = 180^\circ \) (2 góc kề bù)
\(\begin{array}{l} \Rightarrow 60^\circ + \widehat {{B_4}} = 180^\circ \\ \Rightarrow \widehat {{B_4}} = 180^\circ - 60^\circ = 120^\circ \end{array}\)
Vậy hai góc so le trong còn lại A2 và B4 bằng nhau và bằng \(120^\circ \).
HĐ 2
Trên Hình 3.18, cho biết hai góc so le trong A1 và B3 bằng nhau và bằng \(60^\circ \).
Chọn hai góc đồng vị rồi tính và so sánh hai góc đó.
Phương pháp giải:
Sử dụng tính chất: Tổng 2 góc kề bù bằng 180 độ hoặc 2 góc đối đỉnh thì bằng nhau
Lời giải chi tiết:
Chọn cặp góc đồng vị: góc A1 và góc B4
Ta có: \(\widehat {{A_1}} = 60^\circ ;\widehat {{B_3}} = 60^\circ \)
\(\widehat {{B_1}} = \widehat {{B_3}}\) (2 góc đối đỉnh)
\( \Rightarrow \widehat {{B_1}} = 60^\circ \)
Luyện tập 1
a) Cho hình 3.19, biết \(\widehat {{A_2}} = 40^\circ ;\widehat {{B_4}} = 40^\circ \). Em hãy cho biết số đo các góc còn lại.
b) Các cặp góc A1 và B4; A2 và B3 được gọi là các cặp góc trong cùng phía. Tính tổng: \(\widehat {{A_1}} + \widehat {{B_4}};\widehat {{A_2}} + \widehat {{B_3}}\).
Phương pháp giải:
Sử dụng tính chất: Tổng 2 góc kề bù bằng 180 độ hoặc 2 góc đối đỉnh thì bằng nhau
Đường thẳng c cắt 2 đường thẳng, tạo thành 1 cặp góc so le trong bằng nhau.
Lời giải chi tiết:
a) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)
\( \Rightarrow \widehat {{A_1}} + 40^\circ = 180^\circ \)
\( \Rightarrow \widehat {{A_1}} = 180^\circ - 40^\circ = 140^\circ \)
Ta có: \(\widehat {{A_1}} = \widehat {{A_3}}\) (2 góc đối đỉnh), mà \(\widehat {{A_1}} = 140^\circ \) nên \(\widehat {{A_3}} = 140^\circ \)
\(\widehat {{A_2}} = \widehat {{B_4}}\)(2 góc đối đỉnh), mà \(\widehat {{A_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)
Vì \(\widehat {{A_2}} = \widehat {{B_4}} = 40^\circ \), mà 2 góc này ở vị trí so le trong
\( \Rightarrow \) 2 góc đồng vị bằng nhau nên
\(\begin{array}{l}\widehat {{A_1}} = \widehat {{B_1}} = 140^\circ ;\widehat {{A_2}} = \widehat {{B_2}} = 40^\circ ;\\\widehat {{A_3}} = \widehat {{B_3}} = 140^\circ ;\widehat {{A_4}} = \widehat {{B_4}} = 40^\circ \end{array}\)
b) Ta có:
\(\begin{array}{l}\widehat {{A_1}} + \widehat {{B_4}} = 140^\circ + 40^\circ = 180^\circ \\\widehat {{A_2}} + \widehat {{B_3}} = 40^\circ + 140^\circ = 180^\circ \end{array}\)
Unit 9: Festivals around the world
Test Yourself 1
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 7
Unit 5: Achieve
Soạn Văn 7 Cánh diều tập 1 - siêu ngắn
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7