HĐ1
Trong mặt phẳng tọa độ, cho hypebol có phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
a) Hãy giải thích vì sao, nếu điểm \(M({x_0};{y_0})\) thuộc hypebol thì các điểm có tọa độ \(({x_0}; - {y_0}),( - {x_0};{y_0}),( - {x_0}; - {y_0})\) cũng thuộc hypebol (H.3.12).
b) Tìm tọa độ các giao điểm của hypebol với trục hoành. Hypebol có cắt trục tung hay không? Vì sao?
c) Với điểm \(M({x_0};{y_0})\) thuộc hypebol, hãy so sánh \(\left| {{x_0}} \right|\) với \(a\)
Lời giải chi tiết:
a) Nếu điểm \(M({x_0};{y_0})\) thuộc hypebol thì \(\frac{{{x_0}^2}}{{{a^2}}} - \frac{{{y_0}^2}}{{{b^2}}} = 1\)
\( \Rightarrow \frac{{{x_0}^2}}{{{a^2}}} - \frac{{{{( - {y_0})}^2}}}{{{b^2}}} = 1;\frac{{{{( - {x_0})}^2}}}{{{a^2}}} - \frac{{{y_0}^2}}{{{b^2}}} = 1;\frac{{{{( - {x_0})}^2}}}{{{a^2}}} - \frac{{{{( - {y_0})}^2}}}{{{b^2}}} = 1\)
hay các điểm có tọa độ \(({x_0}; - {y_0}),( - {x_0};{y_0}),( - {x_0}; - {y_0})\) cũng thuộc Hypebol.
b)
\(y = 0 \Rightarrow \frac{{{x^2}}}{{{a^2}}} = 1 \Rightarrow x = \pm a\)
Giao điểm của hypebol với Ox là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right).\)
\(x = 0 \Rightarrow - \frac{{{y^2}}}{{{b^2}}} = 1\) Vô lý vì \( - \frac{{{y^2}}}{{{b^2}}} \le 0 < 1\)
Vậy hypebol không có giao điểm với trục tung.
c) \(M({x_0};{y_0})\) thuộc hypebol thì \(\frac{{{x_0}^2}}{{{a^2}}} - \frac{{{y_0}^2}}{{{b^2}}} = 1\)
\(\begin{array}{l} \Rightarrow 1 = \frac{{{x_0}^2}}{{{a^2}}} - \frac{{{y_0}^2}}{{{b^2}}} \le \frac{{{x_0}^2}}{{{a^2}}}\\ \Leftrightarrow {x_0}^2 \ge {a^2}\\ \Leftrightarrow \left| {{x_0}} \right| \ge a\end{array}\)
Luyện tập 1
Cho hyperbol \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\).
a) Tìm tiêu cự và độ dài các trục
b) Tìm các đỉnh và các đường tiệm cận.
Phương pháp giải:
Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
Trong đó:
+ Tiêu cự: \(2c = 2\sqrt {{a^2} + {b^2}} \)
+ Độ dài trục thực, trục ảo: \(2a,2b\)
+ Hai đỉnh \({A_1}( - a;0),{A_2}(a;0)\)
+ Hai đường tiệm cận \(y = - \frac{b}{a}x\) và \(y = \frac{b}{a}x\)
Lời giải chi tiết:
Ta có hypebol: \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\)
\( \Rightarrow a = 8,b = 6,c = \sqrt {{a^2} + {b^2}} = 10\)
a) + Tiêu cự: \(2c = 20\)
+ Độ dài trục thực: \(2a = 16\); trục ảo \(2b = 12.\)
b) + Hai đỉnh \({A_1}( - 8;0),{A_2}(8;0)\)
+ Hai đường tiệm cận \(y = - \frac{3}{4}x\) và \(y = \frac{3}{4}x\)
Tác giả tác phẩm - Chân trời sáng tạo
Môn bóng đá
Thư lại dụ Vương Thông
Phần 1. Một số vấn đề chung
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10