Luyện tập chung trang 68
Luyện tập chung trang 85
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 12. Tổng các góc trong một tam giác
Bài tập cuối chương IV
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 74
Câu hỏi
Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.
Phương pháp giải:
Tam giác cân là tam giác có hai cạnh bằng nhau. Hai cạnh bằng nhau đó gọi là 2 cạnh bên, cạnh còn lại của tam giác gọi là cạnh đáy.
Lời giải chi tiết:
+) Tam giác ABD cân tại đỉnh A có:
AB, AD là 2 cạnh bên
BD là cạnh đáy
\(\widehat B,\widehat D\) là 2 góc ở đáy
\(\widehat A\) là góc ở đỉnh
+) Tam giác ADC cân tại A có:
AC, AD là 2 cạnh bên
DC là cạnh đáy
\(\widehat C,\widehat D\) là 2 góc ở đáy
\(\widehat A\) là góc ở đỉnh
+) Tam giác ABC cân tại A có:
AB, AC là 2 cạnh bên
BC là cạnh đáy
\(\widehat C,\widehat B\) là 2 góc ở đáy
\(\widehat A\) là góc ở đỉnh
HĐ 1
Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.
a) Chứng minh rằng \(\Delta \) ABD = \(\Delta \) ACD theo trường hợp cạnh - cạnh - cạnh.
b) Hai góc B và C của tam giác ABC có bằng nhau không?
Phương pháp giải:
a) Chứng minh ba cạnh của 2 tam giác trên bằng nhau
b) Từ câu a) suy ra 2 cặp góc tương ứng bằng nhau.
Lời giải chi tiết:
a) Xét hai tam giác ABD và ACD có:
AB=AC
AD chung
BD=DC
=>\(\Delta \)ABD = \(\Delta \)ACD (c.c.c)
b) Do \(\Delta \)ABD = \(\Delta \)ACD nên \(\widehat B = \widehat C\)( 2 góc tương ứng)
HĐ 2
Cho tam giác MNP có \(\widehat M = \widehat N\). Vẽ tia phân giác PK của tam giác \(MNP(K \in MN)\).
Chứng minh rằng:
a) \(\widehat {MKP} = \widehat {NKP}\);
b) \(\Delta MPK = \Delta NPK\);
c) Tam giác MNP có cân tại \(P\) không?
Phương pháp giải:
a) Sử dụng định lí: Tổng 3 góc trong một tam giác bằng 180 độ
b) Chứng minh 2 tam giác bằng nhau theo trường hợp góc – cạnh - góc
c) Sử dụng định nghĩa tam giác cân: Tam giác MNP cân là tam giác có 2 cạnh bằng nhau
Lời giải chi tiết:
a)
Xét tam giác MPK có:
\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)
Xét tam giác NPK có:
\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)
Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)
Suy ra \(\widehat {MKP} = \widehat {NKP}\).
b)Xét hai tam giác MPK và NPK có:
\(\widehat {MPK} = \widehat {NPK}\)
PK chung
\(\widehat {MKP} = \widehat {NKP}\)
=>\(\Delta MPK = \Delta NPK\)(g.c.g)
c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)
=> Tam giác MNP cân tại P.
Luyện tập 1
Tính số đo các góc và các cạnh chưa biết của tam giác DEF trong Hình 4.62.
Phương pháp giải:
Chứng minh tam giác DEF cân tại F từ đó suy ra số đo các góc.
Lời giải chi tiết:
Cách 1: Vì tam giác DEF có DF=FE(=4cm) nên tam giác DEF cân tại F.
Mà \(\widehat E=60^0\)
Do đó, \(\Delta DEF \) đều. (Tam giác cân có 1 góc bằng \(60^0\))
\(\Rightarrow \widehat D = \widehat F=\widehat E=60^0\).
Cách 2: Xét tam giác DEF có DF=FE(=4cm) nên tam giác DEF cân tại F.
Suy ra \(\widehat E = \widehat D = {60^o}\) ( tính chất tam giác cân)
Áp dụng định lí tổng ba góc trong tam giác vào tam giác DEF, ta có:
\(\begin{array}{l}\widehat D + \widehat E + \widehat F = {180^o}\\ \Rightarrow {60^o} + {60^o} + \widehat F = {180^o}\\ \Rightarrow \widehat F = {60^o}\end{array}\)
TTN
Thử thách nhỏ
Một tam giác có gì đặc biệt nếu thoả mãn một trong các điều kiện sau:
a) Tam giác có ba góc bằng nhau?
b) Tam giác cân có một góc bằng 60°?
Phương pháp giải:
Áp dụng: Tam giác đều là tam giác có 3 cạnh bằng nhau hoặc ba góc bằng nhau.
Lời giải chi tiết:
a) Tam giác có ba góc bằng nhau là tam giác đều
b) Tam giác cân có 1 góc bằng 60 độ là tam giác đều.
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 7
Unit 5. Food and drink
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 7
Bài 9. Tùy bút và tản văn
Unit 8. I believe I can fly
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7