Hoạt động 1
1. Nội dung câu hỏi
a) Gọi \(g\left( x \right)\) có đạo hàm của hàm số \(y = \sin \left( {2x + \frac{\pi }{4}} \right).\) Tìm \(g\left( x \right)\).
b) Tính đạo hàm của hàm số \(y = g\left( x \right)\).
2. Phương pháp giải
Sử dụng công thức \(\left( {\sin u} \right)' = u'.\cos u;\left( {\cos u} \right)' = - u'.\sin u\)
3. Lời giải chi tiết
a) \(g'\left( x \right) = y' = {\left( {2x + \frac{\pi }{4}} \right)^,}.\cos \left( {2x + \frac{\pi }{4}} \right) = 2\cos \left( {2x + \frac{\pi }{4}} \right)\)
b) \(g'\left( x \right) = - 2{\left( {2x + \frac{\pi }{4}} \right)^,}.\sin \left( {2x + \frac{\pi }{4}} \right) = - 4\sin \left( {2x + \frac{\pi }{4}} \right)\)
Luyện tập 1
1. Nội dung câu hỏi
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = x{e^{2x}};\)
b) \(y = \ln \left( {2x + 3} \right).\)
2. Phương pháp giải
Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm tại mỗi điểm \(x \in \left( {a;b} \right).\) Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x, kí hiệu là \(y''\) hoặc \(f''\left( x \right).\)
3. Lời giải chi tiết
a) \(y' = {e^{2x}} + 2x{e^{2x}} \Rightarrow y'' = 2{e^{2x}} + 2\left( {{e^{2x}} + 2x{e^{2x}}} \right) = 4{e^{2x}} + 4x{e^{2x}}\)
b) \(y' = \frac{{{{\left( {2x + 3} \right)}^,}}}{{2x + 3}} = \frac{2}{{2x + 3}} \Rightarrow y'' = \frac{{ - 2.{{\left( {2x + 3} \right)}^,}}}{{{{\left( {2x + 3} \right)}^2}}} = \frac{{ - 4}}{{{{\left( {2x + 3} \right)}^2}}}\).
Test Yourself 1
Unit 6. World heritages
Bài 8: Hợp chất hữu cơ và hóa học hữu cơ
Unit 2: Vietnam and ASEAN
Chương II. Sóng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11