CH1
1. Nội dung câu hỏi
Hãy chỉ ra hai cặp tam giác vuông đồng dạng có trong hình 9.48:
2. Phương pháp giải
Sử dụng các trường hợp đồng dạng của tam giác.
3. Lời giải chi tiết
Các cặp tam giác vuông đồng dạng:
\(\begin{array}{l}\Delta ABC \backsim \Delta X{\rm{Z}}Y(\widehat A = \widehat X;\widehat B = \widehat Z)\\\Delta E{\rm{D}}F \backsim \Delta KGH\left( {\frac{{E{\rm{D}}}}{{KG}} = \frac{{DF}}{{GF}};\widehat {E{\rm{D}}F} = \widehat {KGH}} \right)\end{array}\)
LT1
1. Nội dung câu hỏi
Nam và Việt muốn đo chiều cao của cột cờ ở sân trường mà hai bạn không trèo lên được. Vào buổi chiều, Nam đo thấy bóng của cột cờ dài 6m và bóng của Việt dài 70cm. Nam hỏi Việt cao bao nhiêu, Việt trả lời là cao 1,4m. Nam liền reo lên: "Tớ biết cột cờ cao bao nhiêu rồi đấy" Vậy cột cờ cao bao nhiêu và làm sao bạn Nam biết được.
Ta thấy chiếc cột cùng với bóng của nó tạo thành hai cạnh góc vuông của tam giác ABC vuông tại đỉnh A, bạn Việt và bóng của mình cũng được xem là hai canh góc vuông của tam giác A'B'C' vuông tại đỉnh A'. Vì các tia sáng mặt trời tạo với hai cái bóng các góc bằng nhau nên \(\widehat B = \widehat {B'}\)
a) Hai tam giác vuông ABC và A'B'C' có đồng dạng với nhau không?
b) Bạn Nam đã tính chiều cao chiếc cột, tức là độ dài đoạn thẳng AC như thế nào và kết quả là bao nhiêu?
2. Phương pháp giải
Chứng minh ΔABC ∽ ΔA′B′C′ suy ra các tỉ số đồng dạng và tính AC
3. Lời giải chi tiết
a) Hai tam giác vuông ABC và A'B'C' có \(\widehat B = \widehat {B'}\)
=> ΔABC ∽ ΔA′B′C′
b) Vì ΔABC ∽ ΔA′B′C′
=> \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)
=> \(\frac{{0,7}}{6} = \frac{{1,4}}{{AC}}\)
=> AC=12(m)
TTN
1. Nội dung câu hỏi
Một người đo chiều cao của một cái cây bằng cách cắm một chiếc cọc xuống đất, cọc cao 2,4m và cách vị trí gốc cây 19m. Người đo đứng cách xa chiếc cọc 1m và nhìn thấy đỉnh cọc thẳng với đỉnh của cây. Hãy tính chiều cao của cây, biết rằng khoảng cách từ chấn đến mắt người ấy là 1,6m(H9.51)
A: Vị trí đỉnh cây
B: Vị trí gốc cây
C: Vị trí đỉnh cột.
D: Vị trí mắt
2. Phương pháp giải
Chứng minh tam giác MXC đồng dạng với tam giác MYA rồi suy ra các tỉ số đồng dạng. Tính được chiều cao của cây.
3. Lời giải chi tiết
Ta có: CX = 2,4 – 1,6 = 0,8(m)
MN = 1 + 19 = 20 (cm)
Xét tam giác MXC và tam giác MYA có: góc M chung; \(\widehat {M{\rm{X}}C} = \widehat {MY{\rm{A}}}\)
\(\begin{array}{l} \Rightarrow \Delta M{\rm{X}}C \backsim \Delta MY{\rm{A}}\\ \Rightarrow \frac{{M{\rm{X}}}}{{MY}} = \frac{{XC}}{{Y{\rm{A}}}}\\ \Rightarrow \frac{1}{{20}} = \frac{{0,8}}{{Y{\rm{A}}}} \Rightarrow Y{\rm{A}} = 20.0,8 = 16(cm)\\ \Rightarrow AB = BY + Y{\rm{A}} = 1,6 + 16 = 17,6(cm)\end{array}\)
Bài 7. Phòng, chống bạo lực gia đình
Chủ đề 5. Em và cộng đồng
Unit 6: The Young Pioneers Club - Câu lạc bộ Thiếu niên Tiền phong
Bài 2. Khí hậu châu Á
Tác giả - Tác phẩm Ngữ văn 8 kì 2
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8