Hoạt động 2
1. Nội dung câu hỏi
Cho M = 25, N = 23. Tính và so sánh:
a) \({\log _2}\left( {MN} \right)\) và \({\log _2}M + {\log _2}N;\)
b) \({\log _2}\left( {\frac{M}{N}} \right)\) và \({\log _2}M - {\log _2}N.\)
2. Phương pháp giải
Sử dụng công thức \({\log _a}{a^\alpha } = \alpha .\)
3. Lời giải chi tiết
a)
\(\begin{array}{l}{\log _2}\left( {MN} \right) = {\log _2}\left( {{2^5}{{.2}^3}} \right) = {\log _2}{2^8} = 8;\\{\log _2}M + {\log _2}N = {\log _2}{2^5} + {\log _2}{2^3} = 5 + 3 = 8\\ \Rightarrow {\log _2}\left( {MN} \right) = {\log _2}M + {\log _2}N\end{array}\)
b)
\(\begin{array}{l}{\log _2}\left( {\frac{M}{N}} \right) = {\log _2}\frac{{{2^5}}}{{{2^3}}}{\log _2}{2^2} = 2\\{\log _2}M - {\log _2}N = {\log _2}{2^5} - {\log _2}{2^3} = 5 - 3 = 2\\ \Rightarrow {\log _2}\left( {\frac{M}{N}} \right) = {\log _2}M - {\log _2}N\end{array}\)
Luyện tập 2
1. Nội dung câu hỏi
Rút gọn biểu thức:
\(A = {\log _2}\left( {{x^3} - x} \right) - {\log _2}\left( {x + 1} \right) - {\log _2}\left( {x - 1} \right)\,\,\,\,\left( {x > 1} \right).\)
2. Phương pháp giải
Sử dụng công thức \({\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N\)
3. Lời giải chi tiết
\(\begin{array}{c}A = {\log _2}\left( {{x^3} - x} \right) - {\log _2}\left( {x + 1} \right) - {\log _2}\left( {x - 1} \right) = {\log _2}\frac{{{x^3} - x}}{{x + 1}} - {\log _2}\left( {x - 1} \right) = {\log _2}\frac{{x\left( {{x^2} - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = {\log _2}\frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} = {\log _2}x.\end{array}\)
Hoạt động 3
1. Nội dung câu hỏi
Giả sử đã cho \({\log _a}M\) và ta muốn tính \({\log _b}M.\) Để tìm mối liên hệ giữa \({\log _a}M\) và \({\log _b}M,\) hãy thực hiện các yêu cầu sau:
a) Đặt \(y = {\log _a}M,\) tính M theo y;
b) Lấy loogarit theo cơ số b cả hai vế của kết quả nhận được trong câu a, từ đó suy ra công thức mới để tính y.
2. Phương pháp giải
Sử dụng lý thuyết \(\alpha = {\log _a}M \Leftrightarrow {a^\alpha } = M.\)
3. Lời giải chi tiết
a) \(y = {\log _a}M \Leftrightarrow M = {a^y}\)
b) Lấy loogarit theo cơ số b cả hai vế của \(M = {a^y}\) ta được
\({\log _b}M = {\log _b}{a^y} \Leftrightarrow {\log _b}M = y{\log _b}a \Leftrightarrow y = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}\)
Luyện tập 3
1. Nội dung câu hỏi
Không dùng máy tính cầm tay, hãy tính \({\log _9}\frac{1}{{27}}.\)
2. Phương pháp giải
Sử dụng công thức \({\log _a}M = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}.\)
3. Lời giải chi tiết
\({\log _9}\frac{1}{{27}} = {\log _{{3^2}}}{3^{ - 3}} = \frac{{{{\log }_3}{3^{ - 3}}}}{{{{\log }_3}{3^2}}} = \frac{{ - 3}}{2}.\)
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Lịch sử lớp 11
Phần hai: Giáo dục pháp luật
SBT tiếng Anh 11 mới tập 2
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Phần ba: Sinh học cơ thể
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11