SGK Toán 8 - Kết nối tri thức với cuộc sống tập 2
SGK Toán 8 - Kết nối tri thức với cuộc sống tập 2

Trả lời câu hỏi mục 2 trang 114, 115, 116

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ1
HĐ2
LT
VD
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ1
HĐ2
LT
VD

HĐ1

1. Nội dung câu hỏi

Quan sát hình chóp tam giác đều và hình khai triển của nó. Hãy tính tổng diện tích các mặt bên của hình chóp.

 

2. Phương pháp giải

- Nhận thấy các mặt bên của hình chóp được tạo bởi 3 hình tam giác

- Tín diện tích một tam giác.

 

3. Lời giải chi tiết

Nhận thấy các mặt bên của hình chóp được tạo bởi 3 hình tam giác

Diện tích của một tam giác là: \(\frac{1}{2}\)⋅6⋅5=15(cm2)

=> Tổng diện tích các mặt bên là: 15.3=45(cm2)

HĐ2

1. Nội dung câu hỏi

Hãy tính tích của nửa chu vi mặt đáy với trung đoạn của hình chóp tam giác đều. So sánh kết quả vừa tính với tổng diện tích các mặt bên của hình chóp 

 

2. Phương pháp giải

Tính các kết quả theo yêu cầu bài toán và so sánh

 

3. Lời giải chi tiết

Có nửa chu vi đáy là: \(\frac{1}{2}.\)(5+5+5) = \(\frac{{15}}{2}\)(cm)

Có trung đoạn là: 6cm

=> Tích của nửa chu vi mặt đáy với trung đoạn của hình chóp tam giác đều là: \(\frac{{15}}{2}.6 = 45\)

=> Kết quả bằng với tổng diện tích các mặt bên của hình chóp

LT

1. Nội dung câu hỏi

Tính diện tích xung quanh của hình chóp tam giác đều S.MNP trong Hình 10.8, biết IP = 3 cm và cạnh bên SP = 5 cm

2. Phương pháp giải

Tính nửa chu vi đáy của tam giác MNP

Tính diện tích xung quanh của hình chóp tam giác đều S.MNP

 

3. Lời giải chi tiết

Xét tam giác SIP vuông tại I, có

\(\begin{array}{l}S{I^2} = S{P^2} - I{P^2}\\S{I^2} = {5^2} - {3^2}\\ \Rightarrow SI = 4cm\end{array}\)

- Vì tam giác SMP cân tại S => đường cao SI đồng thời là đường trung tuyến của tam giác SMP => IM=IP=3cm => MP = 6 cm

Xét tam giác đều MNP có \(p = \frac{1}{2}\left( {6 + 6 + 6} \right) = 9(cm)\)

Diện tích xung quanh của hình chóp tam giác đều S. MNP:

\({S_{xp}} = 9.4 = 36\left( {c{m^2}} \right)\)

VD

1. Nội dung câu hỏi

Câu hỏi mở đầu: Đỉnh FANSIPAN (Lào Cai) cao 3 143 m, là đỉnh núi cao nhất Đông Dương. Trên đỉnh núi, người ta đặt một chóp làm bằng inox có dạng hình chóp tam giác đều cạnh đáy dài 60 cm, cạnh bên dài khoảng 96,4 cm (H.10.1). Hỏi tổng diện tích các mặt bên của hình chóp là bao nhiêu?

Hình 10.11 mô tả hình chóp trong tình huống mở đầu. Dựa vào đó, em hãy trả lời câu hỏi của bài toán.

2. Phương pháp giải

Tính diện tích xung quanh của hình chóp tam giác đều S.ABC

 

3. Lời giải chi tiết

Nửa chu vi của hình tam giác đều ABC là

\(p = \frac {1}{2}(60 + 60 + 60) = 90 (cm)\).

Vì SH là đường cao của tam giác SBC nên SH là trung đoạn của hình chóp tam giác đều.

Vì tam giác SBC cân tại S nên SH đồng thời là đường trung tuyến hay H chính là trung điểm của BC, suy ra \(HC = HB =\frac{BC}{2}=\frac{60}{2}=30\) (cm).

Tam giác SCH vuông tại H, theo định lý Pythagore, ta có:

\(SC^2 = SH^2 + HC^2\), suy ra \(SH^2 = SC^2 – HC^2 = (96,4)^2 – 30^2 = 8 392,96.\)

Do đó SH ≈ 91,61 cm.

Tổng diện tích các mặt bên của hình chóp hay diện tích xung quanh của hình chóp tam giác đều S.ABC là 

\(S­_{xq} \approx 90 . 91,61 = 8 244,9 (cm^2)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved