Luyện tập chung trang 68
Luyện tập chung trang 85
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 12. Tổng các góc trong một tam giác
Bài tập cuối chương IV
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 74
HĐ 3
Viết các hỗn số và số thập phân trong các phép tính sau dưới dạng phân số rồi thực hiện phép tính:
\(a)0,36.\frac{{ - 5}}{9};b)\frac{{ - 7}}{6}:1\frac{5}{7}.\)
Phương pháp giải:
Bước 1: Viết các hỗn số và số thập phân dưới dạng phân số
Bước 2: Thực hiện phép nhân, chia phân số
Muốn nhân 2 phân số, ta nhân tử với tử, mẫu với mẫu.
Muốn chia 2 phân số, ta nhân phân số thứ nhất với phân số nghịch đảo của phân số thứ 2.
Lời giải chi tiết:
\(\begin{array}{l}a)0,36.\frac{{ - 5}}{9}\\ = \frac{{36}}{{100}}.\frac{{ - 5}}{9}\\ = \frac{9}{{25}}.\frac{{ - 5}}{9}\\ = \frac{{ - 1}}{5}\\b)\frac{{ - 7}}{6}:1\frac{5}{7}\\ = \frac{{ - 7}}{6}:\frac{{12}}{7}\\ = \frac{{ - 7}}{6}.\frac{7}{{12}}\\ = \frac{{ - 49}}{{72}}\end{array}\)
Chú ý: Khi tính toán, nếu phân số chưa ở dạng tối giản thì ta nên rút gọn về dạng tối giản để tính toán thuận tiện hơn.
Luyện tập 3
Tính: \(a)\left( { - \frac{9}{{13}}} \right).\left( { - \frac{4}{5}} \right);b) - 0,7:\frac{3}{2}\)
Phương pháp giải:
+) Viết số thập phân dưới dạng phân số
+) Thực hiện phép nhân, chia phân số
Muốn nhân 2 phân số, ta nhân tử với tử, mẫu với mẫu.
Muốn chia 2 phân số, ta nhân phân số thứ nhất với phân số nghịch đảo của phân số thứ 2.
Lời giải chi tiết:
\(\begin{array}{l}a)\left( { - \frac{9}{{13}}} \right).\left( { - \frac{4}{5}} \right)\\ = \frac{9}{{13}}.\frac{4}{5}\\ = \frac{{36}}{{65}}\\b) - 0,7:\frac{3}{2}\\ = \frac{{ - 7}}{{10}}.\frac{2}{3}\\ = \frac{{ - 7}}{{15}}\end{array}\)
Chú ý: Tích của 2 số hữu tỉ cùng dấu là 1 số hữu tỉ dương.
Tích của 2 số hữu tỉ trái dấu là 1 số hữu tỉ âm.
Luyện tập 4
Tính một cách hợp lí: \(\frac{7}{6}.3\frac{1}{4} + \frac{7}{6}.( - 0,25).\)
Phương pháp giải:
Viết số thập phân, hỗn số dưới dạng phân số
Sử dụng tính chất phân phối giữa phép nhân và phép cộng (a.b+a.c = a.(b+c)
Lời giải chi tiết:
\(\begin{array}{l}\frac{7}{6}.3\frac{1}{4} + \frac{7}{6}.( - 0,25)\\ = \frac{7}{6}.\frac{{13}}{4} + \frac{7}{6}.\frac{{ - 25}}{{100}}\\ = \frac{7}{6}.\frac{{13}}{4} + \frac{7}{6}.\frac{{ - 1}}{4}\\ = \frac{7}{6}.[\left( {\frac{{13}}{4} + ( - \frac{1}{4})} \right)]\\ = \frac{7}{6}.\frac{{12}}{4}\\ = \frac{7}{6}.3\\ = \frac{7}{2}\end{array}\)
Vận dụng 2
Có hai tấm ảnh kích thước 10 cm \( \times \) 15 cm được in trên giấy ảnh kích thước 21,6 cm \( \times \)27,9 cm như Hình 1.8. Nếu cắt ảnh theo đúng kích thước thì diện tích phần giấy ảnh còn lại bao nhiêu?
Phương pháp giải:
Tính diện tích từng tấm ảnh và diện tích tờ giấy
Diện tích phần giấy ảnh còn lại = Diện tích tờ giấy – diện tích 2 tấm ảnh
Diện tích hình chữ nhật = Chiều dài . Chiều rộng
Lời giải chi tiết:
Diện tích 1 tấm ảnh là:
10.15 = 150 (cm2)
Diện tích tấm giấy là:
21,6 . 27,9 = 602,64 (cm2)
Diện tích phần giấy ảnh còn lại là:
602,64 – 2.150 = 302,64 (cm2)
Đáp số: 302, 64 cm2
Chương 7. Biểu thức đại số
Mở đầu
Unit 11: Travelling in the Future
Unit 6: Schools
Unit 5: Travel & Transportation
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7