Hoạt động 3
1. Nội dung câu hỏi
Cho điểm O và đường thẳng \(\Delta \) không đi qua O. Gọi d là đường thẳng đi qua O và song song với \(\Delta \). Xét hai mặt phẳng phân biệt tuỳ ý (P) và (Q) cùng chứa d. Trong các mặt phẳng (P), (Q) tương ứng kẻ các đường thẳng a, b cùng đi qua O và vuông góc với d (H.7.16). Giải thích vì sao mp(a, b) đi qua O và vuông góc với \(\Delta \).
2. Phương pháp giải
Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.
3. Lời giải chi tiết
\(\left. \begin{array}{l}a \bot d\\d//\Delta \end{array} \right\} \Rightarrow \Delta \bot a\)
\(\left. \begin{array}{l}b \bot d\\d//\Delta \end{array} \right\} \Rightarrow \Delta \bot b\)
Mà \(a \cap b = \left\{ O \right\}\) \( \Rightarrow \) mp(a, b) đi qua O và vuông góc với \(\Delta \).
Hoạt động 4
1. Nội dung câu hỏi
Cho mặt phẳng (P) và điểm O. Trong mặt phẳng (P), lấy hai đường thẳng cắt nhau a, b tuỳ ý. Gọi \(\left( \alpha \right),\left( \beta \right)\) là các mặt phẳng qua O và tương ứng vuông góc với a, b (H.7.19).
a) Giải thích vì sao hai mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) cắt nhau theo một đường thẳng \(\Delta \) đi qua O.
b) Nêu nhận xét về mối quan hệ giữa \(\Delta \) và (P).
2. Phương pháp giải
- 2 mặt phẳng cắt nhau theo 1 giao tuyến là đường thẳng.
- Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.
3. Lời giải chi tiết
a) Vì \(\left( \alpha \right),\left( \beta \right)\) là các mặt phẳng qua O và giao 2 mặt phẳng là 1 đường thẳng nên hai mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) cắt nhau theo một đường thẳng đi qua O.
b) Gọi \(\Delta \) là giao tuyến của 2 \(\left( \alpha \right),\left( \beta \right)\)
\(\left. \begin{array}{l}a \bot \left( \alpha \right)\\\Delta \subset \left( \alpha \right)\end{array} \right\} \Rightarrow a \bot \Delta \)
\(\left. \begin{array}{l}b \bot \left( \beta \right)\\\Delta \subset \left( \beta \right)\end{array} \right\} \Rightarrow b \bot \Delta \)
Mà \(a \cap b = \left\{ I \right\} \Rightarrow \Delta \bot \left( P \right)\)
Luyện tập 2
1. Nội dung câu hỏi
Cho ba điểm phân biệt A, B, C sao cho các đường thẳng AB và AC cùng vuông góc với một mặt phẳng (P). Chứng minh rằng ba điểm A, B, C thẳng hàng.
2. Phương pháp giải
Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng.
3. Lời giải chi tiết
Vì AB và AC cùng vuông góc với một mặt phẳng (P) nên AB trùng AC
\( \Rightarrow \) A, B, C thẳng hàng.
Chủ đề 4. Trách nhiệm với gia đình
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
CHƯƠNG VI: KHÚC XẠ ÁNH SÁNG
Unit 2: Leisure time
Chủ đề 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11