HĐ 2
Trong mặt phẳng tọa độ \(Oxy\), ta xét parabol (P) với phương trình chính tắc \({y^2} = 2px\) trong đó \(p > 0\) (Hình 20)
a) So sánh khoảng cách từ MF từ điểm M đến tiêu điểm F và khoảng cách MK từ điểm M đến đường thẳng \(\Delta \)
b) Tính độ dài đoạn thẳng MK. Từ đó tính độ dài đoạn thẳng MF
Phương pháp giải:
Cho parabol có PTCT: \({y^2} = 2px\) trong đó \(p > 0\)
+ Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)
+ Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
Lời giải chi tiết:
a) Khoảng cách MF từ điểm M đến tiêu điểm F bằng khoảng cách MK từ điểm M đến đường chuẩn \(\Delta \)
b) Ta có
\(MF = \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}} = \sqrt {{x^2} - px + \frac{{{p^2}}}{4} + 2px} = \sqrt {{x^2} + px + \frac{{{p^2}}}{4}} = \sqrt {{{\left( {x + \frac{p}{2}} \right)}^2}} = x + \frac{p}{2}\)
Phương trình đường chuẩn \(\Delta :x = - \frac{p}{2} \Rightarrow \Delta :x + 0y + \frac{p}{2} = 0\)
Khoảng cách MK từ điểm M đến đường thẳng \(\Delta \) là: \(MK = \frac{{\left| {x + 0y + \frac{p}{2}} \right|}}{{\sqrt {{1^2} + {0^2}} }} = \left| {x + \frac{p}{2}} \right| = x + \frac{p}{2}\)
Vậy \(MF = MK = x + \frac{p}{2}\)
Luyện tập
a) Lập phương trình chính tắc của parabol (P), biết phương trình đường chuẩn là \(x = - 2\)
b) Tìm tọa độ tiêu điểm của parabol (P)
c) Tìm tọa độ điểm M thuộc parabol (P), biết khoảng cách từ M đến tiêu điểm bằng 6
Phương pháp giải:
Cho parabol có PTCT: \({y^2} = 2px\) trong đó \(p > 0\)
+ Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)
+ Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
Lời giải chi tiết:
a) Ta có phương trình đường chuẩn \(x = - 2 \Rightarrow \frac{p}{2} = 2 \Rightarrow p = 4\)
Vậy phương trình chính tắc của parabol (P) là \({y^2} = 8x\)
b) Tiêu điểm của parabol (P) là \(F\left( {2;0} \right)\)
c) Khoảng cách từ M đến tiêu điểm \(F\left( {2;0} \right)\) bằng 6 nên \(x + \frac{p}{2} = 6 \Rightarrow x + 2 = 6 \Rightarrow x = 4 \Rightarrow {y^2} = 8.4 \Rightarrow y = \pm 4\sqrt 2 \)
Vậy \(M\left( {4; \pm 4\sqrt 2 } \right)\)
Phần 3. Sinh học vi sinh vật và virus
Chủ đề 2. Bảng tuần hoàn các nguyên tố hóa học
Thơ duyên
Chuyên đề 2. Công nghệ enzyme và ứng dụng
Unit 2: Adventure
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10