Trả lời câu hỏi mục 2 trang 68, 69 SGK Toán

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 9
LT9
Hoạt động 10
LT10
LT11
LT12
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 9
LT9
Hoạt động 10
LT10
LT11
LT12

Hoạt động 9

1. Nội dung câu hỏi

Cho hai hàm số \(f(x);\,g(x)\) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm \({x_0} \in (a;b)\)

a)     Xét hàm số \(h(x) = f(x) + g(x);\,\,x \in (a;b)\). So sánh

\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}}\) và \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{g({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - g({x_0})}}{{\Delta x}}\)

b)    Nêu nhận xét về \(h'({x_0})\) và \(f'({x_0}) + g'({x_0})\).

 

2. Phương pháp giải

Sử dụng định nghĩa để tính đạo hàm \(f'({x_0}) = \mathop {\lim }\limits_{x \to x_0} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

 

3. Lời giải chi tiết

a)     Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\).

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\).

b)    \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\).

LT9

1. Nội dung câu hỏi

Tính đạo hàm của hàm số $f\left( x \right)=x\sqrt{x}$ tại điểm x dương bất kì.

 

2. Phương pháp giải

Dựa vào định lí đạo hàm của tích.

 

3. Lời giải chi tiết

$f'\left( x \right)=x'\sqrt{x}+x\left( \sqrt{x} \right)'=\sqrt{x}+\frac{x}{2\sqrt{x}}=\sqrt{x}+\frac{1}{2}\sqrt{x}=\frac{3}{2}\sqrt{x}$.

Hoạt động 10

1. Nội dung câu hỏi

Cho hàm số \(y = f(u) = \sin u;\,\,u = g(x) = {x^2}\)

a)     Bằng cách thay u bởi \({x^2}\) trong biểu thức \(\sin u\), hãy biểu thị giá trị của y theo biến số x.

b)    Xác định hàm số \(y = f(g(x))\)

 

2. Phương pháp giải

Thay biểu thức vào để tính

 

3. Lời giải chi tiết

a)     \(f\left( u \right) = \sin {x^2}\)

b)    Hàm số: \(y = f\left( {{x^2}} \right) = \sin {x^2}\)

LT10

1. Nội dung câu hỏi

Tính đạo hàm của hàm số $f\left( x \right)=\tan x+\cot x$ tại điểm ${{x}_{0}}=\frac{\pi }{3}$.

 

2. Phương pháp giải

Dựa vào định lí đạo hàm của tổng và đạo hàm của hàm số lượng giác.

 

3. Lời giải chi tiết

Ta có: $f'\left( x \right)=\tan 'x+\cot 'x=\frac{1}{{{\cos }^{2}}x}-\frac{1}{{{\sin }^{2}}x}$

Tại ${{x}_{0}}=\frac{\pi }{3}$, $f'\left( \frac{\pi }{3} \right)=\frac{1}{{{\cos }^{2}}\frac{\pi }{3}}-\frac{1}{{{\sin }^{2}}\frac{\pi }{3}}=4-\frac{4}{3}=\frac{8}{3}$.

LT11

1. Nội dung câu hỏi

Hàm số $y={{\log }_{2}}\left( 3x+1 \right)$ là hàm hợp của hai hàm số nào?

 

2. Phương pháp giải

Dựa vào khái niệm của hàm hợp.

 

3. Lời giải chi tiết

Đặt u = 3x + 1, ta có: $y={{\log }_{3}}u$.

Vậy $y={{\log }_{2}}\left( 3x+1 \right)$ là hàm hợp của hai hàm số $y={{\log }_{3}}u$, u = 3x + 1.

LT12

1. Nội dung câu hỏi

Tính đạo hàm của mỗi hàm số sau:

a) $y={{e}^{3x+1}}$.

b) $y={{\log }_{3}}\left( 2x-3 \right)$.

 

2. Phương pháp giải

Dựa vào quy tắc tính đạo hàm của hàm hợp.

 

3. Lời giải chi tiết

a) Đặt u = 3x + 1, y = log3u. Khi đó: y’u = eu; u’x= 3.

Theo công thức đạo hàm của hàm hợp, ta có:

y’x = y’u.u’x = eu.3 = 3.e3x + 1.

b) Đặt u = 2x - 3, y = eu. Khi đó: y’u = $\frac{1}{u\ln 3}$; u’x= 2.

Theo công thức đạo hàm của hàm hợp, ta có:

y’x = y’u.u’x = $\frac{1}{u\ln 3}$.2 = $\frac{2}{\left( 2x-3 \right)\ln 3}$

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved