Mục 2 trang 7, 8 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lựa chọn câu hỏi để xem giải nhanh hơn
Khám phá 2
Thực hành 2
Vận dụng
Lựa chọn câu hỏi để xem giải nhanh hơn
Khám phá 2
Thực hành 2
Vận dụng

Khám phá 2

1. Nội dung câu hỏi

Khi một ô tô dời chỗ đậu từ vị trí M đến M’, khoảng cách giữa hai trục bánh xe có thay đổi không?

 

2. Phương pháp giải

Quan sát hình 3 để trả lời

 

3. Lời giải chi tiết

Khi một ô tô dời chỗ đậu từ vị trí M đến M’, khoảng cách giữa hai trục bánh xe không thay đổi.

Thực hành 2

1. Nội dung câu hỏi

Cho điểm O trong mặt phẳng. Ta định nghĩa một phép biến hình h như sau: Với mỗi điểm M khác O chọn M’ = h(M) sao cho O là trung điểm của đoạn thẳng MM’ (Hình 6), còn với M trùng với O thì ta chọn O = h(M). Chứng minh h là một phép dời hình.

 

2. Phương pháp giải

Phép dời hình là phép biến hình bảo toàn khoảng cách (không làm thay đổi khoảng cách) giữa 2 điểm bất kì.

 

3. Lời giải chi tiết

⦁ Với hai điểm M, N khác O, ta đặt M’ = h(M) và N’ = h(N) với O là trung điểm của MM’ và O cũng là trung điểm của NN’.

Suy ra tứ giác MNM’N’ là hình bình hành.

Do đó MN = M’N’ (1)

⦁ Với M trùng O, ta có O = h(M).

Suy ra MO = 0 (2)

Từ (1), (2), ta thu được h là một phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì.

Vậy h là một phép dời hình.

Vận dụng

1. Nội dung câu hỏi

Một người đã vẽ xong bức tranh một con thiên nga đang bơi trên mặt hồ (đường thẳng d) (Hình 7a). Người đó muốn vẽ bóng của con thiên nga đó xuống mặt nước (như Hình 7b) bằng cách gấp tờ giấy theo đường thẳng d và đồ theo hình con thiên nga trên nửa tờ giấy còn lại. Chứng tỏ rằng đây là một phép dời hình.

2. Phương pháp giải

Phép dời hình là phép biến hình bảo toàn khoảng cách (không làm thay đổi khoảng cách) giữa 2 điểm bất kì.

 

3. Lời giải chi tiết

Ta đặt f là phép biến hình biến con thiên nga trong bức tranh thành bóng của con thiên nga đó qua đường thẳng d (mặt hồ).

Chọn M’ = f(M) hay M’ là điểm đối xứng của M qua d.

Suy ra d là đường trung trực của đoạn thẳng MM’.

Gọi H là giao điểm của MM’ và d.

Khi đó H là trung điểm của MM’ và MM’ ⊥ d tại H.

Trên hình 7b, chọn điểm N tùy ý trên con thiên nga đã vẽ trên mặt hồ (như hình vẽ).

 

Chọn \(N' = f\left( N \right)\) hay N’ là điểm đối xứng của N qua d.

Suy ra d là đường trung trực của đoạn thẳng NN’.

Gọi K là giao điểm của NN’ và d.

Khi đó K là trung điểm của NN’ và NN’ ⊥ d tại K.

Ta có

 \(\begin{array}{l}\overrightarrow {MN}  + \overrightarrow {{\rm{M'N'}}}  = \left( {\overrightarrow {MH}  + \overrightarrow {HK}  + \overrightarrow {KN} } \right) + \left( {\overrightarrow {{\rm{M'H}}}  + \overrightarrow {HK}  + \overrightarrow {KN'} } \right)\\ = \left( {\overrightarrow {MH}  + \overrightarrow {{\rm{M'H}}} } \right) + \left( {\overrightarrow {KN}  + \overrightarrow {KN'} } \right) + 2\overrightarrow {HK} \end{array}\)

 \( = \vec 0 + \vec 0 + 2\overrightarrow {HK} \) (do H, K lần lượt là trung điểm của MM’, NN’)

\( = 2\overrightarrow {HK} \)

Lại có 

\(\begin{array}{l}\overrightarrow {MN}  - \overrightarrow {{\rm{M'N'}}}  = \left( {\overrightarrow {HN}  - \overrightarrow {HM} } \right) - \left( {\overrightarrow {HN'}  - \overrightarrow {HM'} } \right)\\ = \overrightarrow {HN}  - \overrightarrow {HM}  - \overrightarrow {HN'}  + \overrightarrow {HM'}  = \left( {\overrightarrow {HN}  - \overrightarrow {HN'} } \right) + \left( {\overrightarrow {HM'}  - \overrightarrow {HM} } \right) = \overrightarrow {{\rm{N'N}}}  + \overrightarrow {MM'} \end{array}\)

Ta có \({\overrightarrow {MN} ^2} - {\overrightarrow {{\rm{M'N'}}} ^2} = \left( {\overrightarrow {MN}  + \overrightarrow {{\rm{M'N'}}} } \right)\left( {\overrightarrow {MN}  - \overrightarrow {{\rm{M'N'}}} } \right) = 2\overrightarrow {HK} \left( {\overrightarrow {{\rm{N'N}}}  + \overrightarrow {MM'} } \right)\) \( = 2\overrightarrow {HK} .\overrightarrow {{\rm{N'N}}}  + 2\overrightarrow {HK} .\overrightarrow {MM'}  = 2.0 + 2.0 = 0\) (do MM’ ⊥ d và NN’ ⊥ d).

Suy ra \({\overrightarrow {MN} ^2} = {\overrightarrow {{\rm{M'N'}}} ^2}\)

Do đó \(MN{\rm{ }} = {\rm{ }}M'N'.\)

Vì vậy phép biến hình f bảo toàn khoảng cách giữa hai điểm bất kì.

Vậy ta có điều phải chứng minh.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved