HĐ3
Một hộp chứa 12 tấm thẻ được đánh số 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Rút ngẫu
nhiên từ hộp đó một tấm thẻ.
a) Mô tả không gian mẫu \(\Omega \) . Các kết quả có thể có đồng khả năng không?
b) Xét biến cố E: “Rút được thẻ ghi số nguyên tố". Biến cố E là tập con nào của không gian mẫu?
c) Phép thử có bao nhiêu kết quả có thể? Biến cố E có bao nhiêu kết quả thuận lợi? Từ đó, hãy tính xác suất của biến cố E.
Lời giải chi tiết:
a) Không gian mẫu \(\Omega = \left\{ {1;2;3;4;5;6;7;8;9;10;11;12} \right\}\). Các kết quả xảy ra có đồng khả năng với nhau.
b) Biến cố \(E = \left\{ {2;3;5;7;11} \right\}\).
c) Phép thử có 12 kết quả có thể xảy ra. Biến cố E có 5 kết quả có lợi.
Vậy xác suất của biến cố E là \(\frac{5}{{12}}\).
Câu hỏi
Từ định nghĩa cổ điển của xác suất, hãy chứng minh các nhận xét trên
Lời giải chi tiết:
E là biến cố liên quan đến phép thử T nên \(0 \le n(E) \le n(\Omega ) \Rightarrow 0 \le P(E) = \frac{{n(E)}}{{n(\Omega )}} \le 1\)
\(P(\Omega ) = \frac{{n(\Omega )}}{{n(\Omega )}} = 1\)
\(P(\emptyset ) = \frac{{n(\emptyset )}}{{n(\Omega )}} = \frac{0}{{n(\Omega )}} = 0\)
Luyện tập 3
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6.
Phương pháp giải:
Sử dụng công thức xác suất cổ điển \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết:
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\).
Unit 7. Cultural diversity
Unit 5: Ambition
Chủ đề 3. Một số hiểu biết về phòng thủ dân sự
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Vật lí lớp 10
Hello!
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10