SGK Toán 11 - Chân trời sáng tạo tập 2

Trả lời câu hỏi mục 3 trang 30, 31

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 5
Thực hành 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 5
Thực hành 3

Hoạt động 5

1. Nội dung câu hỏi

Xét quần thể vi khuẩn ở Hoạt động 1.

a) Ở những thời điểm nào thì số lượng cá thể vi khuẩn vượt quá 50000?

b) Ở những thời điểm nào thì số lượng cá thể vi khuẩn vượt quá 50000 nhưng chưa vượt quá 100000?

 

2. Phương pháp giải

Xét tính đồng biến, nghịch biến của hàm số \(P\left( t \right)\).

 

3. Lời giải chi tiết

Do \(10 > 1\) nên hàm số \(P\left( t \right) = {50.10^{kt}}\) đồng biến trên \(\mathbb{R}\).

a) Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.

Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(t > 10\) thì số lượng cá thể vi khuẩn vượt quá 50000.

b) Thời gian để số lượng cá thể vi khuẩn đạt đến 100000 là:

\(100000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 2000 \Leftrightarrow 0,3t = \log 2000 \Leftrightarrow t \approx 11\) (giờ)

Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.

Tại thời điểm \(t = 11\) thì số lượng cá thể vi khuẩn bằng 100000.

Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(10 < t < 11\) thì số lượng cá thể vi khuẩn vượt quá 50000 nhưng chưa vượt quá 100000.

Thực hành 3

1. Nội dung câu hỏi

Giải các bất phương trình sau:

a) \({2^x} > 16\);                   

b) \(0,{1^x} \le 0,001\);           

c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x}\).

 

2. Phương pháp giải

Đưa 2 vế của bất phương trình về cùng cơ số.

 

3. Lời giải chi tiết

a) \({2^x} > 16 \Leftrightarrow {2^x} > {2^4} \Leftrightarrow x > 4\) (do \(2 > 1\)) .

b) \(0,{1^x} \le 0,001 \Leftrightarrow 0,{1^x} \le 0,{1^3} \Leftrightarrow x \ge 3\) (do \(0 < 0,1 < 1\)).

c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {{{\left( {\frac{1}{5}} \right)}^2}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{5}} \right)^{2x}} \Leftrightarrow x - 2 \le 2{\rm{x}}\) (do \(0 < \frac{1}{5} < 1\))

\( \Leftrightarrow x \ge  - 2\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved