HĐ4
Cho điểm \(M\left( {{x_o};{y_0}} \right)\) và đường thẳng \(\Delta :{\rm{a}}x + by + c = 0\) có vecto pháp tuyến \(\overrightarrow n = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n \ne 0} \right)\)
Gọi H là hình chiếu vuông góc của M trên \(\Delta \).
a) Chưng minh rằng \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \sqrt {{a^2} + {b^2}} .HM\)
b) Giả sử H có tọa độ \(\left( {{x_1};{y_1}} \right)\). Chứng minh rằng \(\overrightarrow n .\overrightarrow {HM} = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\)
c) Chứng minh rằng \(HM = \frac{{\left| {{\rm{a}}{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết:
a) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| = \sqrt {{a^2} + {b^2}} .HM.1 = \sqrt {{a^2} + {b^2}} .HM\)
b) Ta có : \(\overrightarrow n = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n \ne 0} \right){\rm{ ,}}\overrightarrow {HM} = \left( {{x_1} - {x_o};{y_1} - {y_o}} \right) \Rightarrow \overrightarrow n .\overrightarrow {HM} = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\) trong đó \(a{x_1} + b{y_1} = c\).
c) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| \Leftrightarrow \left| {a{x_o} + b{y_o} + c} \right| = \sqrt {{a^2} + {b^2}} .HM \Rightarrow HM = \frac{{\left| {a{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Trải nghiệm
Đo trực tiếp khoảng cách từ điểm M đến đường thẳng A(H7.10) và giải thích vì sao kết quả đo đạc đó phù hợp với kết quả tính toán trong lời giải của Ví dụ 4.
Lời giải chi tiết:
Khoảng cách từ M đến đường thẳng \(\Delta \) chính là độ dài đoạn MH trong đó H là hình chiếu từ M xuống \(\Delta \).
Gọi các điểm A, B, C, D như hình vẽ.
Ta có: \(OA = 3,OB = 4 \Rightarrow AB =5 \)
\(DB = 2 = \frac{1}{2}OB \Rightarrow CD = \frac{1}{2}OA = 1,5 \Rightarrow MC = 4 - 1,5 = 2,5.\)
Lại có: \(\widehat {MCH} = \widehat {BCD} = \widehat {BAO}\)
Mà: \(\sin \widehat {MCH} = \frac{{MH}}{{MC}};\sin \widehat {BAO} = \frac{{OB}}{{AB}} = \frac{4}{5}\)
\( \Rightarrow \frac{{MH}}{{2,5}} = \frac{4}{5} \Leftrightarrow MH = 2\)
Do đó kết quả đo đạc phù hợp với kết quả tính toán trong lời giải ở Ví dụ 4.
Luyện tập 5
Tính khoảng cách từ điểm \(M\left( {1;2} \right)\) đến đường thẳng\(\Delta :\left\{ \begin{array}{l}x = 5 + 3t\\y = - 5 - 4t\end{array} \right.\).
Phương pháp giải:
Bước 1: Đưa pt về dạng PT tổng quát
Bước 2: Khoảng cách từ \(M({x_0};{y_0})\) đến \(\Delta :ax + by + c = 0\) là:
\(d(M,\Delta ) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết:
Ta có:
\(\left\{ {\begin{array}{*{20}{l}}
{x = 5 + 3t}\\
{y = - 5 - 4t}
\end{array}} \right. \Rightarrow 4x + 3y = 4(5 + 3t) + 3( - 5 - 4t) = 5\)
Phương trình tổng quát của \(\Delta \) là \(4x + 3y - 5 = 0\)
Khoảng cách từ M đến đường thẳng \(\Delta \) là \(d\left( {M,\Delta } \right) = \frac{{\left| {4.1 + 3.2 - 5} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 1\).
Vận dụng
Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).
a) Chọn hệ trục toạ độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng toạ độ tương ứng với 1 m trong thực tế. Hãy xác định toạ độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.
b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không?
Phương pháp giải:
Viết phương trình tổng quát của EF, sau đó tính khoảng cách từ B đến EF rồi so sánh với 10,7.
Lời giải chi tiết:
a) Tọa độ các điểm là: \(B\left( {0;0} \right),A\left( {0;12} \right),C\left( {15;0} \right),D\left( {15;12} \right),E\left( {5;12} \right),F\left( {15;6} \right)\).
Ta có: \(\overrightarrow {EF} = \left( {10; - 6} \right) \Rightarrow \overrightarrow {{n_{EF}}} = \left( {3;5} \right)\). Phương trình tổng quát của EF là: \(3\left( {x - 5} \right) + 5\left( {y - 12} \right) = 0 \Leftrightarrow 3x + 5y - 75 = 0\).
b) Khoảng cách từ điểm B đến đường thẳng EF là: \(d\left( {B,EF} \right) = \frac{{\left| {3.0 + 5.0 - 75} \right|}}{{\sqrt {{3^2} + {5^2}} }} \approx 12,9\left( m \right)\).
Mặt khác, Nam có thể quăng lưới câu xa 10,7m. Do đó lưỡi câu của Nam không thể rơi vào nơi nuôi vịt được.
Đề thi học kì 2
Đề kiểm tra giữa học kì I
Đề thi giữa kì 2
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 10
Unit 9: Travel and Tourism
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10