Bài tập cuối chương VIII
Bài 1. Góc và cạnh của một tam giác
Bài 8. Tính chất ba đường cao của tam giác
Bài 9. Tính chất ba đường phân giác của tam giác
Bài 5. Đường trung trực của một đoạn thẳng
Bài 4. Đường vuông góc và đường xiên
Bài 7. Tính chất ba đường trung tuyến của tam giác
Bài 10. Hoạt động thực hành và trải nghiệm: Làm giàn hoa tam giác để trang trí lớp học
Bài 2. Tam giác bằng nhau
Bài 3. Tam giác cân
Bài 6. Tính chất ba đường trung trực của tam giác
HĐ 5
Hãy nêu các trường hợp bằng nhau cho mỗi cặp tam giác trong Hình 17. Từ các điều kiện bằng nhau của hai tam giác, người ta suy ra được các trường hợp bằng nhau sau đây của hai tam giác vuông.
Phương pháp giải:
Dựa vào tam giác vuông có sẵn 1 cặp góc bằng nhau ( góc vuông ) nên chỉ cần tìm điều kiện để các cặp cạnh, cặp góc còn lại bằng nhau
Lời giải chi tiết:
a) Xét \(\Delta{ABC}\) và \(\Delta{DEF}\) có:
AB = DE (gt)
\(\widehat {BAC} = \widehat {EDF}\) (gt)
AC = DF (gt)
\(\Rightarrow \Delta{ABC}=\Delta{DEF}\) ( c-g-c )
b) Ta có: \(\widehat B + \widehat C = \widehat Q + \widehat R = 90^0\)
Mà \(\widehat B = \widehat Q\) \( \Rightarrow \widehat C = \widehat R\)
Xét \(\Delta{ABC}\) và \(\Delta{PQR}\) có:
\(\widehat C = \widehat R\) (gt)
BC = QR (gt)
\(\widehat B = \widehat Q\) (gt)
\(\Rightarrow \Delta{ABC}=\Delta{PQR}\) ( g-c-g )
c) Xét \(\Delta{ABC}\) và \(\Delta{HKG}\) có:
\(\widehat C = \widehat G\) (gt)
AC = HG (gt)
\(\widehat A = \widehat H\) (gt)
\(\Rightarrow \Delta{ABC}=\Delta{HKG}\) ( g-c-g )
Thực hành 4
Tìm các tam giác vuông bằng nhau trong mỗi hình bên (Hình 19).
Phương pháp giải:
Sử dụng các trường hợp bằng nhau của tam giác vuông
Lời giải chi tiết:
a) Xét \(\Delta{MNP} và \Delta{QPN}\), ta có:
NM = PQ
NP chung
\(\widehat {MNP} = \widehat {NPQ}\)
\(\Rightarrow \Delta{MNP} =\Delta{QPN}\) (c.g.c)
b) Ta thấy\(\Delta{ABH}=\Delta{KBH}\) (g-c-g) và \(\Delta{AHC}=\Delta{KHC}\)(c-g-c)
\(\Delta{ABC}=\Delta{KBC}\)
HĐ 6
Cho tam giác ABC vuông tại A trong Hình 20a. Vẽ lên tờ giấy tam giác vuông A’B’C’có cạnh huyền và một cạnh góc vuông bằng với cạnh huyền và một cạnh góc vuông của tam giác ABC như sau:
- Vẽ góc vuông xA’ý, trên cạnh A’y vẽ đoạn A’C’= AC.
- Vẽ cung tròn tâm C’ bán kính bằng BC cắt A’x tại B’
Cắt rời tam giác A’B’C’. Em hãy cho biết có thể đặt chồng khít tam giác này lên tam giác kia không.
Phương pháp giải:
- Ta vẽ 2 cạnh trước rồi sau đó vẽ góc
- Cắt và so sánh 2 hình
Lời giải chi tiết:
Ta nhận thấy 2 hình bằng nhau (chồng lên nhau vì vừa khít)
Thực hành 3
Hãy chỉ ra các cặp tam giác bằng nhau trong Hình 22 và cho biết chúng bằng nhau theo trường hợp nào.
Phương pháp giải:
- Sử dụng các trường hợp bằng nhau của tam giác: c-c-c; c-g-c; g-c-g
- Sử dụng các trường hợp bằng nhau của tam giác vuông: 2 cạnh góc vuông; cạnh góc vuông - góc nhọn kề; cạnh huyền - góc nhọn.
Lời giải chi tiết:
+) Xét \(\Delta{ABD}\) vuông tại B và \(\Delta{ACD}\) vuông tại D có:
AD chung
\(\widehat {BAD} = \widehat {DAC}\) (gt)
\( \Rightarrow \Delta{ABD}=\Delta{ACD}\) (cạnh huyền – góc nhọn)
\( \Rightarrow \) BD = CD, AB = AC ( 2 cạnh tương ứng)
\( \widehat {BDA} = \widehat {ADC}\)( 2 góc tương ứng)
+) Xét \(\Delta{BED}\) vuông tại B và \(\Delta{CHD}\) vuông tại C có:
BD = CD (cmt)
\(\widehat {BDE} = \widehat {CDH}\)( 2 góc đối đỉnh )
\( \Rightarrow \Delta{BED}=\Delta{CHD \) (cạnh góc vuông - góc nhọn kề )
+) Ta có: \(\widehat {BDA} + \widehat {BDE}\)= \(\widehat {ADE}\)
\(\widehat {ADC} + \widehat {CDH}\)= \(\widehat {ADH}\)
Mà \(\widehat {BDA} = \widehat {ADC}\), \(\widehat {BDE} = \widehat {CDH}\)
\( \Rightarrow \widehat {ADE} = \widehat {ADH}\)
Xét \(\Delta{ADE}\) và \(\Delta{ADH}\) có:
\(\widehat {BAD} = \widehat {DAC}\) (gt)
AD chung
\(\widehat {ADE} = \widehat {ADH}\) (cmt)
\( \Rightarrow \Delta{ADE}=\Delta{ADH}\)( g – c – g )
+) Xét \(\Delta{ABH}\) vuông tại B và \(\Delta{ACE}\) vuông tại C có:
AB = AC (cmt)
\(\widehat {BAH}\) chung
\( \Rightarrow \Delta{ABH}=\Delta{ACE}\) (cạnh góc vuông – góc nhọn kề)
Chương IX: Sinh trưởng và phát triển ở sinh vật
Chủ đề 1. Các cuộc phát kiến địa lí thế kỉ XV- XVI
Chủ đề 4. Ứng dụng Tin học
Writing
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 7
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7