Hoạt động 3
1. Nội dung câu hỏi
Cho hai đường thẳng chéo nhau \(a\) và \(b\). Gọi \(\left( Q \right)\) là mặt phẳng chứa \(b\) và song song với \(a\). Gọi \(\left( P \right)\) là mặt phẳng chứa đường thẳng \(a\), vuông góc với \(\left( Q \right)\) và cắt \(b\) tại điểm \(J\). Trong \(\left( P \right)\), gọi \(c\) là đường thẳng đi qua \(J\), vuông góc với \(a\) và cắt \(a\) tại điểm \(I\).
Đường thẳng \(IJ\) có vuông góc với \(b\) không? Giải thích.
2. Phương pháp giải
Chứng minh \(IJ\) vuông góc với mặt phẳng \(\left( Q \right)\) chứa đường thẳng \(b\).
3. Lời giải chi tiết
Gọi \(\left( R \right)\) là mặt phẳng chứa \(a\)và song song với \(\left( Q \right)\). Ta có:
\(\left. \begin{array}{l}\left( Q \right)\parallel \left( R \right)\\\left( P \right) \cap \left( Q \right) = a'\\\left( P \right) \cap \left( R \right) = a\end{array} \right\} \Rightarrow a\parallel a'\)
Mà \(IJ \bot a \Rightarrow IJ \bot a'\)
\(\left. \begin{array}{l}\left( P \right) \bot \left( Q \right)\\\left( P \right) \cap \left( Q \right) = a'\\IJ \subset \left( P \right),IJ \bot a'\end{array} \right\} \Rightarrow IJ \bot \left( Q \right)\)
Mà \(b \subset \left( Q \right) \Rightarrow IJ \bot b\).
Thực hành 3
1. Nội dung câu hỏi
Cho tứ diện \(OABC\) có ba cạnh \(OA,OB,OC\) đều bằng \(a\) và vuông góc từng đôi một. Tính khoảng cách giữa hai đường thẳng:
a) \(OA\) và \(BC\);
b) \(OB\) và \(AC\).
2. Phương pháp giải
Cách tính khoảng cách giữa hai đường thẳng chéo nhau:
Cách 1: Dựng đường vuông góc chung.
Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.
3. Lời giải chi tiết
a) Gọi \(M\) là trung điểm của \(BC\).
Tam giác \(OBC\) vuông cân tại \(O \Rightarrow OM \bot BC\)
\(\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right) \Rightarrow OA \bot OM\)
\( \Rightarrow d\left( {OA,BC} \right) = OM = \frac{1}{2}BC = \frac{1}{2}\sqrt {O{B^2} + O{C^2}} = \frac{{a\sqrt 2 }}{2}\)
b) Gọi \(N\) là trung điểm của \(AC\).
Tam giác \(OAC\) vuông cân tại \(O \Rightarrow ON \bot AC\)
\(\left. \begin{array}{l}OA \bot OB\\OB \bot OC\end{array} \right\} \Rightarrow OB \bot \left( {OAC} \right) \Rightarrow OB \bot ON\)
\( \Rightarrow d\left( {OB,AC} \right) = ON = \frac{1}{2}AC = \frac{1}{2}\sqrt {O{A^2} + O{C^2}} = \frac{{a\sqrt 2 }}{2}\)
Vận dụng 2
1. Nội dung câu hỏi
Một căn phòng có trần cao 3,2 m. Tỉnh khoảng cách giữa một đường thẳng \(a\) trên trần nhà và đường thẳng \(b\) trên sàn nhà.
2. Phương pháp giải
Cách tính khoảng cách giữa hai đường thẳng chéo nhau:
Cách 1: Dựng đường vuông góc chung.
Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.
3. Lời giải chi tiết
Vì trần nhà và sàn nhà song song với nhau nên đường thẳng \(a\) nằm trên trần nhà song song với sàn nhà.
Vậy khoảng cách giữa đường thẳng \(a\) trên trần nhà và đường thẳng \(b\) trên sàn nhà bằng khoảng cách giữa trần nhà và sàn nhà. Khoảng cách đó bằng 3,2 m.
Chủ đề 2: Kĩ thuật dừng bóng và kĩ thuật đánh đầu
Tải 10 đề kiểm tra 15 phút - Chương II - Hóa học 11
D
Chương 4. Kiểu dữ liệu có cấu trúc
CHƯƠNG 4: ĐẠI CƯƠNG VỀ HÓA HỌC HỮU CƠ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11