HĐ5
Một cửa hàng giày thể thao đã thống kê cỡ giày của một số khách hàng nam được chọn ngẫu nhiên cho kết quả như sau:
38 39 39 38 40 41 39 39 38 39 39 39 40 39 39.
a) Tính cỡ giày trung bình. Số trung bình này có ý nghĩa gì với cửa hàng không?
b) Cửa hàng nên nhập cỡ giày nào với số lượng nhiều nhất?
Phương pháp giải:
a)
+ Cỡ giày trung bình: Số trung bình của mẫu số liệu
+ Nhận xét ý nghĩa số trung bình.
b) Cửa hàng nên nhập cỡ giày có nhiều người chọn nhất.
Lời giải chi tiết:
a)
Bảng tần số:
Cỡ giày | 38 | 39 | 40 | 41 |
Số giày | 3 | 9 | 2 | 1 |
Cỡ giày trung bình:
\(\bar X = \frac{{38.3 + 39.9 + 40.2 + 41}}{{3 + 9 + 2 + 1}} = \frac{{586}}{{15}} \approx 39\)
Ý nghĩa: Cỡ giày trung bình này có thể đại diện cho cỡ giày của cửa hàng.
b) Cỡ giày số 39 là cỡ giày nhiều khách nam đi nhất trong tổng số người được chọn nên cửa hàng nên nhập cỡ giày này.
Vận dụng
Hãy tính các số đặc trưng đo xu thế trung tâm cho mẫu số liệu về điềm khảo sát của lớp A và lớp B ở đầu bài học để phân tích và so sánh hiệu quả học tập của hai phương pháp này.
Hai phương pháp học tiếng Anh khác nhau được áp dụng cho hai lớp A và B có trình độ tiếng Anh tương đương nhau. Sau hai tháng, điềm khảo sát tiếng Anh (thang điểm 10) của hai lớp được cho như hình bên.
Lớp A
Lớp B
Quan sát hai mẫu số liệu trên, có thể đánh giá được phương pháp học tập nào hiệu quả hơn không? Để làm được điều đó, người ta thường tính toán các số đặc trưng cho mỗi mẫu số liệu rồi so sánh.
Phương pháp giải:
Các số đặc trưng đo xu thế trung tâm: số trung bình, trung vị, mốt.
Công thức tính trung bình cộng: \(\overline X = \frac{\text{Tổng điểm cả lớp}}{\text{Số học sinh}}\)
Lời giải chi tiết:
Lớp A:
Trung bình cộng lớp A: \(\overline {{X_A}} = \frac{{148}}{{25}} = 5,92\)
Bảng tần số:
Điểm | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Số HS | 2 | 2 | 2 | 5 | 2 | 6 | 3 | 3 |
Do n=25 nên trung vị: số thứ 13
Do 2+2+2+5+2=13
=> Trung vị là 6.
Mốt là 7 do 7 có tần số là 6 (cao nhất)
Lớp B:
Trung bình cộng lớp B: \(\overline {{X_B}} = \frac{{157}}{{25}} = 6,28\)
Bảng tần số:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số HS | 2 | 2 | 4 | 5 | 7 | 2 | 2 | 1 |
Do n=25 nên trung vị: số thứ 13
Do 2+2+4+5=13
=> Trung vị là 6.
Mốt là 7 do 7 có tần số là 7 (cao nhất)
Trừ số trung bình ra thì trung vị và mốt của cả hai mẫu số liệu đều như nhau
=> Hai phương pháp học tập hiệu quả như nhau.
Chủ đề 2: Xây dựng quan điểm sống
Hello!
Gặp Ka - ríp và Xi- la
CHƯƠNG I. CẤU TẠO NGUYÊN TỬ
Toán 10 tập 1 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10