Hoạt động 4
1. Nội dung câu hỏi
Cho đồ thị của hàm số \(y = {\log _2}x\) và y = 2 như Hình 6.8. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 và từ đó suy ra tập nghiệm của bất phương trình \({\log _2}x > 2.\)
2. Phương pháp giải
Quan sát đồ thị
3. Lời giải chi tiết
Khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 là \(\left( {4; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình \({\log _2}x > 2\) là \(\left( {4; + \infty } \right)\)
Luyện tập 4
1. Nội dung câu hỏi
Giải các bất phương trình sau:
a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right);\)
b) \(2\log \left( {2x + 1} \right) > 3.\)
2. Phương pháp giải
Xét bất phương trình dạng \({\log _a}x > b\)
+) a > 1, nghiệm của bất phương trình là \(x > {a^b}\)
+) 0 < a < 1, nghiệm của bất phương trình là \(0 < x < {a^b}\)
3. Lời giải chi tiết
a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\) (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow - 1 < x < 2\))
\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)
Mà – 1 < x < 2 nên x + 1 > 0
\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)
KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)
b) \(2\log \left( {2x + 1} \right) > 3\) (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))
\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10} - 1}}{2}\end{array}\)
KHĐK ta có \(x > \frac{{10\sqrt {10} - 1}}{2}\)
Ví dụ
1. Nội dung câu hỏi
Áp suất khí quyển p (tính bằng kilopascal, viết tắt là kPa) ở độ cao h (so với mực nước biển, tính bằng km) được tính theo công thức sau:
\(\ln \left( {\frac{p}{{100}}} \right) = - \frac{h}{7}.\)
(Theo britannica.com)
a) Tính áp suất khí quyển ở độ cao 4 km.
b) Ở độ cao trên 10 km thì áp suất khí quyển sẽ như thế nào?
2. Phương pháp giải
Sử dụng công thức \(\ln \left( {\frac{p}{{100}}} \right) = - \frac{h}{7}.\)
3. Lời giải chi tiết
a) Ở độ cao 4km ta có: \(\ln \left( {\frac{p}{{100}}} \right) = - \frac{4}{7} \Leftrightarrow \frac{p}{{100}} = {e^{\frac{{ - 4}}{7}}} \Leftrightarrow p = 56,4718122\)
Vậy áp suất khí quyển ở độ cao 4 km là 56,4718122 kPa.
b) Ở độ cao trên 10km ta có:
\(h > 10 \Leftrightarrow \ln \left( {\frac{p}{{100}}} \right) < - \frac{{10}}{7} \Leftrightarrow \frac{p}{{100}} < {e^{\frac{{ - 10}}{7}}} \Leftrightarrow p < 23,96510364\)
Vậy ở độ cao trên 10 km thì áp suất khí quyển bé hơn 29,96510364 kPa.
CHƯƠNG 2: NITƠ - PHOTPHO
CHƯƠNG VII: HIĐROCABON THƠM. NGUỒN HIĐROCABON THIÊN NHIÊN
Review 2
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 11
HÌNH HỌC SBT - TOÁN 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11