Toán 10 tập 1 - Chân trời sáng tạo

Câu hỏi mục 4 trang 92, 93

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ Khám phá 4
Thực hành 5
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ Khám phá 4
Thực hành 5

HĐ Khám phá 4

a) Cho điểm M là trung điểm của đoạn thẳng AB. Ta đã biết \(\overrightarrow {MB}  =  - \overrightarrow {MA}  = \overrightarrow {AM} .\) Hoàn thành phép cộng vectơ sau: \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MA}  + \overrightarrow {AM}  = \overrightarrow {MM}  = ?\)

b) Cho điểm G là trọng tâm của tam giác ABC có trung tuyến AI. Lấy D là điểm đối xứng với G qua I. Ta có BGCD là hình bình hành và G là trung điểm của đoạn thẳng AD. Với lưu ý rằng \(\overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow {GD} \) và \(\overrightarrow {GA}  = \overrightarrow {DG} \), hoàn thành các phép cộng vectơ sau:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow {GA}  + \overrightarrow {GD}  = \overrightarrow {{\rm{DD}}}  = ?\)

Phương pháp giải:

a) Thay thế các vectơ bằng nhau \(\overrightarrow {MB}  =  - \overrightarrow {MA}  = \overrightarrow {AM} .\)

b) Bước 1: Áp dụng quy tắc hình bình hành trên BGCD

Bước 2: Áp dụng tính chất trung điểm vừa tìm được ở câu a) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 \)

(với M là trung điểm của AB)

Lời giải chi tiết:

a) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MA}  + \overrightarrow {AM}  = \overrightarrow {MM}  = \overrightarrow 0 \) (vì vectơ \(\overrightarrow {MB}  =  - \overrightarrow {MA}  = \overrightarrow {AM} .\))

b) Xét hình bình hành BGCD ta có: \(\overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow {GD} \)

\( \Rightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow {GA}  + \overrightarrow {GD}  = \overrightarrow {DG}  + \overrightarrow {GD}  = \overrightarrow {{\rm{DD}}}  = \overrightarrow 0 \)

(vì \(\overrightarrow {GA}  =  - \overrightarrow {GD}  = \overrightarrow {DG} \))

Thực hành 5

Cho hình bình hành ABCD có tâm O. Tìm ba điểm M, N, P thỏa mãn:

a) \(\overrightarrow {MA}  + \overrightarrow {MD}  + \overrightarrow {MB}  = \overrightarrow 0 \) 

b) \(\overrightarrow {ND}  + \overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)     

c) \(\overrightarrow {PM}  + \overrightarrow {PN}  = \overrightarrow 0 \)

Phương pháp

a)  Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)(với G là trọng tâm của tam giác ABC)

b) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

c) Sử dụng tính chất trung điểm \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 \)(với M là trung điểm của AB)

Phương pháp giải:

a) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)(với G là trọng tâm của tam giác ABC)

b) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

c) Sử dụng tính chất trung điểm \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 \)(với M là trung điểm của AB)

Lời giải chi tiết:

a) Áp dụng tính chất trọng tâm ta có: \(\overrightarrow {MA}  + \overrightarrow {MD}  + \overrightarrow {MB}  = \overrightarrow 0 \)

Suy ra M là trọng tâm của tam giác ADB

Vậy M nằm trên đoạn thẳng AO sao cho \(AM = \frac{2}{3}AO\)

b) Tiếp tục áp dụng tính chất trọng tâm \(\overrightarrow {ND}  + \overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Suy ra N là trọng tâm của tam giác BCD

Vậy N nằm trên đoạn thẳng OD sao cho \(ON = \frac{1}{3}OD\)

c) Áp dụng tính chất trung điểm ta có: \(\overrightarrow {PM}  + \overrightarrow {PN}  = \overrightarrow 0 \)

Suy ra P là trung điểm của đoạn thẳng MN

Vậy điểm P trùng với điểm O

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved