Câu hỏi mục I trang 87, 88, 89

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ Khởi động
Hoạt động 1
Hoạt động 2
Hoạt động 3
Luyện tập – vận dụng 1
Luyện tập – vận dụng 2
Luyện tập – vận dụng 3
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ Khởi động
Hoạt động 1
Hoạt động 2
Hoạt động 3
Luyện tập – vận dụng 1
Luyện tập – vận dụng 2
Luyện tập – vận dụng 3

HĐ Khởi động

Lời giải chi tiết:

Người đó chuyển động theo quỹ đạo đường tròn nên để xác định phương trình quỹ đạo chuyển động của người đó ta cần phải lập phương trình đường tròn.

Hoạt động 1

a) Tính khoảng cách từ gốc toạ độ C(0;0) đến điểm M(3 ; 4) trong mặt phẳng toạ độ Oxy. 

 b) Cho hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy. Nêu công thức tính độ

dài đoạn thẳng IM.

Lời giải chi tiết:

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

Hoạt động 2

Trong mặt phẳng toạ độ Oxy, nêu mối liên hệ giữa x và y để:

a) Điểm M(x ; y) nằm trên đường tròn tâm O(0 : 0) bán kính 5.

b) Điểm M(x ; y) nằm trên đường tròn (C) tâm I(a; b) bán kính R.

Lời giải chi tiết:

a) Mối liên hệ giữa x và y là: \({x^2} + {y^2} = 5\)

b) Mối liên hệ giữa x và y là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)

Hoạt động 3

Viết phương trình đường tròn (C): \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) về dạng \({x^2} + {y^2} - 2{\rm{a}}x - 2by + c = 0\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\\ \Leftrightarrow {x^2} - 2ax + {a^2} + {y^2} - 2by + {b^2} - {R^2} = 0\\ \Leftrightarrow {x^2} + {y^2} - 2ax - 2by + c = 0\left( {{a^2} + {b^2} - {R^2} = c} \right)\end{array}\)

Luyện tập – vận dụng 1

 Viết phương trình đường tròn tâm I(6 ; - 4) đi qua điểm A(8 ; – 7).

Lời giải chi tiết:

Phương trình đường tròn tâm I  bán kính \(IA = \left| {\overrightarrow {IA} } \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {13} \) là:

\({\left( {x - 6} \right)^2} + {\left( {y + 4} \right)^2} = 13\)

Luyện tập – vận dụng 2

Tìm k sao cho phương trình:\({x^2} + {y^2} + 2kx + 4y + 6k--1 = 0\) là phương trình đường tròn.

Lời giải chi tiết:

Để phương trình trên là phương trình đường tròn thì 

\({\left( { - k} \right)^2} + {\left( { - 2} \right)^2} > 6k - 1 \Leftrightarrow {k^2} + 4 - 6k + 1 > 0 \Leftrightarrow \left[ \begin{array}{l}k < 1\\k > 5\end{array} \right.\)

Luyện tập – vận dụng 3

Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1 ; – 3).

Lời giải chi tiết:

Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {1 - a} \right)^2} + {\left( { - 3 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = \frac{{ - 1}}{2}\end{array} \right.\)

Vậy \(I\left( {3; - \frac{1}{2}} \right)\) và \(R = IA = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2}}  = \frac{{\sqrt {41} }}{2}\)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 3} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{41}}{4}\)

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved