Hoạt động 4
Xét hàm số \(y = f\left( x \right) = {x^2}\)
a) Tính các giá trị \({y_1} = f\left( {{x_1}} \right),{y_2} = f\left( {{x_2}} \right)\) tương ứng với giá trị \({x_1} = - 1;{x_2} = 1\).
b) Biểu diễn trong mặt phẳng tọa độ Oxy các điểm \({M_1}\left( {{x_1};{y_1}} \right),{M_2}\left( {{x_2};{y_2}} \right)\).
Phương pháp giải:
a) Thay \({x_1} = - 1;{x_2} = 1\) vào tìm \({y_1} = f\left( {{x_1}} \right),{y_2} = f\left( {{x_2}} \right)\).
b) Xác định điểm và biểu diễn trên mặt phẳng.
Lời giải chi tiết:
a) Thay \({x_1} = - 1;{x_2} = 1\) vào \(y = {x^2}\) ta được:
\({y_1} = f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)
\({y_2} = f\left( 1 \right) = {1^2} = 1\)
b) Ta có \({x_1} = - 1;{y_1} = 1 \Rightarrow {M_1}\left( { - 1;1} \right)\)
Ta có: \({x_2} = 1;{y_2} = 1 \Rightarrow {M_2}\left( {1;1} \right)\)
Biểu diễn trên mặt phẳng:
Luyện tập – vận dụng 4
Cho hàm số \(y = \frac{1}{x}\) và ba điểm \(M\left( { - 1; - 1} \right),N\left( {0;2} \right),P\left( {2;1} \right)\). Điểm nào thuộc đồ thị hàm số trên? Điểm nào không thuộc đồ thị hàm số trên?
Phương pháp giải:
- Tìm tập xác định của hàm số.
- Loại các điểm không thuộc tập xác định.
- Thay hoành độ x của các điểm còn lại, kết quả ra bằng tung độ thì điểm thuộc đồ thị, ngược lại thì không.
Lời giải chi tiết:
Tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)
Ta thấy \({x_N} = 0\)=> Điểm N không thuộc đồ thị.
Thay \({x_M} = - 1\) vào ta được: \(y = \frac{1}{{ - 1}} = - 1\)=> Điểm M thuộc đồ thị.
Thay \({x_P} = 2\) vào ta được: \(y = \frac{1}{2} \ne {y_P}\)=> Điểm P không thuộc đồ thị.
Luyện tập – vận dụng 5
Dựa vào Hình 4, xác định \(g\left( { - 2} \right),g\left( 0 \right),g\left( 2 \right)\).
Phương pháp giải:
- Xác định \(x = - 2,{\rm{ }}x = 0\) và \(x = 2\) trên trục \(Ox\).
- Kẻ đường thẳng vuông góc với \(Ox\), cắt đồ thị tại điểm nào thì lại dóng sang tung độ tìm y.
Lời giải chi tiết:
+) Với \(x = - 2\), kẻ đường thẳng vuông góc với Ox thì cắt đồ thị tại điểm có tung độ bằng \(y = - 1\)
+) Với \(x = 0 \Rightarrow y = 0\)
+) Với \(x = 2 \Rightarrow y = - 1\)
Chương II. Một số nền văn minh thế giới thời kỉ cổ-trung đại
Unit 3: Music
Unit 2: Science and inventions
Chương 9. Biến dạng của vật rắn
Bài mở đầu
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10