Bài 4. Biểu đồ hình quạt tròn
Bài 6. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Hoạt động thực hành và trải nghiệm. Chủ đề 3: Dung tích phổi
Bài tập cuối chương V
Bài 1. Thu thập, phân loại và biểu diễn dữ liệu
Bài 2. Phân tích và xử lí dữ liệu
Bài 3. Biểu đồ đoạn thẳng
Bài 5. Biến cố trong một số trò chơi đơn giản
Bài 11. Tính chất ba đường phân giác của tam giác
Bài 12. Tính chất ba đường trung trực của tam giác
Bài 13. Tính chất ba đường cao của tam giác
Bài 1. Tổng các góc của một tam giác
Bài 2. Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3. Hai tam giác bằng nhau
Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc
Bài 4. Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh
Bài 10. Tính chất ba đường trung tuyến của tam giác
Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh
Bài 7. Tam giác cân
Bài 9. Đường trung trực của một đoạn thẳng
Bài 8. Đường vuông góc và đường xiên
Bài tập cuối chương VII
II. Nhân đơn thức với đa thức
HĐ 2
HĐ 2
Quan sát hình chữ nhật MNPQ ở Hình 3.
a) Tính diện tích mỗi hình chữ nhật (I), (II);
b) Tính diện tích của hình chữ nhật MNPQ;
c) So sánh: \(a(b + c)\) và \(ab + ac\).
Phương pháp giải:
a) Diện tích hình chữ nhật bằng chiều dài nhân chiều rộng cùng đơn vị đo.
b) Diện tích của hình chữ nhật MNPQ bằng diện tích hình chữ nhật (I) cộng với diện tích hình chữ nhật (II).
c) Muốn so sánh \(a(b + c)\) và \(ab + ac\), ta thực hiện phép tính \(a(b + c)\) rồi so sánh.
Lời giải chi tiết:
a)
Diện tích của hình chữ nhật (I) là: \(a.b\).
Diện tích của hình chữ nhật (II) là: \(a.c\).
b) Diện tích của hình chữ nhật MNPQ là: \(ab + ac\).
c) Ta có: \(a(b + c) = a.b + a.c\).
Vậy \(a(b + c)\) = \(ab + ac\).
HĐ 3
HĐ 3
Cho đơn thức \(P(x) = 2x\) và đa thức \(Q(x) = 3{x^2} + 4x + 1\).
a) Hãy nhân đơn thức P(x) với từng đơn thức của đa thức Q(x).
b) Hãy cộng các tích vừa tìm được.
Phương pháp giải:
a) Để nhân đơn thức P(x) với từng đơn thức của đa thức Q(x), trước tiên ta xác định các đơn thức của đa thức Q(x) rồi sau đó thực hiện phép tính.
b) Cộng các tích vừa tìm được ở phần a).
Lời giải chi tiết:
a)
Các đơn thức của đa thức Q(x) là: \(3{x^2};4x;1\).
Tích của đơn thức P(x) với từng đơn thức của đa thức Q(x) lần lượt là: \(2x.3{x^2} = 6{x^3};2x.4x = 8{x^2};2x.1 = 2x\).
b) Cộng các tích vừa tìm được:
\(6{x^3} + 8{x^2} + 2x\).
LT - VD 2
LT - VD 2
Tính:
a) \(\dfrac{1}{2}x(6x - 4)\);
b) \( - {x^2}(\dfrac{1}{3}{x^2} - x - \dfrac{1}{4})\).
Phương pháp giải:
Muốn nhân một đơn thức với đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức rồi cộng các tích với nhau.
Lời giải chi tiết:
a) \(\dfrac{1}{2}x(6x - 4) = \dfrac{1}{2}x.6x + \dfrac{1}{2}x.( - 4) = 3{x^2} - 2x\).
b) \(\begin{array}{l} - {x^2}(\dfrac{1}{3}{x^2} - x - \dfrac{1}{4}) = - {x^2}.\dfrac{1}{3}{x^2} + - {x^2}. - x + - {x^2}. - \dfrac{1}{4}\\ = - \dfrac{1}{3}{x^4} + {x^3} + \dfrac{1}{4}{x^2}\end{array}\)
Chủ đề 1: Trường học của em
Unit 5: Food and Drink
Bài 7. Trí tuệ dân gian
Chương 3: Các hình khối trong thực tiễn
Chủ đề 9. Sinh trưởng và phát triển ở sinh vật
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7