Câu hỏi mục II trang 85, 86

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 4
Hoạt động 5
LT-VD 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 4
Hoạt động 5
LT-VD 4

Hoạt động 4

Trong Hình 54, hai ròng rọc có trục quay nằm ngang và song song với nhau, hai vật có trọng lượng bằng nahu. Mỗi dây có một đầu buộc vào vật, một đầu buộc vào một mảnh nhựa cứng. Hai vật lần lượt tác động lên mảng nhựa các lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} .\) Nhận xét về hướng và độ dài của mỗi cặp vecto sau:

a) \(\overrightarrow {{P_1}} \) và \(\overrightarrow {{P_2}} \) biểu diễn trọng lực của hai vật

b) \(\overrightarrow {{F_1}} \) và \(\;\overrightarrow {{F_2}} .\)

(Bỏ qua trọng lượng các dây và các lực ma sát).

Phương pháp giải:

a) Nhận xét về phương, hướng và độ lớn của trọng lực của hai vật

b) Nhận xét về phương, hướng và độ lớn của hai lực.

Lời giải chi tiết:

a) Trọng lực của hai vật đều hướng xuống, vuông góc với mặt đất, đo dó chúng cùng phương, cùng hướng với nhau.

Hơn nữa: Công thức tính độ lớn trọng lực là: \(P = mg\).

Hai vật có khối lượng như nhau, do đó  \({P_1} = {P_2}\)

Vậy \(\overrightarrow {{P_1}}  = \overrightarrow {{P_2}} \)

b) Do trọng lực tạo thành lực kéo lên mảnh nhựa nên độ lớn của các lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} \) là như nhau.

Chúng có hướng ngược nhau.

Hoạt động 5

Cho hai vecto \(\overrightarrow a \),\(\overrightarrow b \). Lấy một điểm M tùy ý.

a) Vẽ \(\overrightarrow {MA}  = \overrightarrow a ,\;\overrightarrow {MB}  = \overrightarrow b ,\;\overrightarrow {MC}  =  - \overrightarrow b \) (Hình 56)

b) Tổng của hai vecto \(\overrightarrow a \) và \(( - \overrightarrow b )\) bằng vecto nào?

Phương pháp giải:

a) Áp dụng kết quả: \(\overrightarrow {AB}  = \overrightarrow {DC}  \Leftrightarrow \)ABCD là hình bình hành. Để xác định các điểm A, B, C.

b) Đặt vecto \(\overrightarrow a \) và \(( - \overrightarrow b )\) vào hai vecto chung gốc là hai cạnh của một hình bình hành. Từ đó xác định tổng theo quy tắc hình bình hành.

 

Lời giải chi tiết:

a) Đặt D, E lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).

Ta có: \(\overrightarrow {MA}  = \overrightarrow a \)hay \(\overrightarrow {MA}  = \overrightarrow {DE} \)

\( \Leftrightarrow MAED\) là hình bình hành.

Do đó A là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow a \)và điểm M.

Tương tự ta có:

B là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow b \)và điểm M.

Lại có: \(\overrightarrow {MC}  =  - \overrightarrow b  =  - \overrightarrow {MB} \) do đó \(MC = MB\) và hai vecto \(\overrightarrow {MB} ,\overrightarrow {MC} \) ngược hướng nhau.

Hay M là trung điểm đoạn thẳng BC.

b) Lấy N là đỉnh thứ tư của hình bình hành AMCN.

 

Khi đó ta có: \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MN} \)

Mà: \(\overrightarrow {MA}  = \overrightarrow a ;\;\overrightarrow {MC}  =  - \overrightarrow b \)

\( \Rightarrow \overrightarrow a  + ( - \overrightarrow b ) = \overrightarrow {MN} \).

LT-VD 4

Cho tam giác ABC có M là trung điểm AC, N là trung điểm BC và AB = a. Tính độ dài vecto \(\overrightarrow {CM}  - \overrightarrow {NB} \).

Phương pháp giải:

Bước 1: Chỉ ra \(\overrightarrow {NC}  =  - \overrightarrow {NB} \). Suy ra \(\overrightarrow {CM}  - \overrightarrow {NB}  = \overrightarrow {CM}  + \overrightarrow {NC} \)

Bước 2: Sử dụng tính chất giao hoán, xác định vecto tổng \(\overrightarrow {CM}  + \overrightarrow {NC} \)

Bước 3: Tính độ dài vecto đó theo a.

Lời giải chi tiết:

Ta có: \(\overrightarrow {NB} \) và \(\overrightarrow {NC} \) là hai vecto đối nhau (do N là trung điểm của BC)

\( \Rightarrow \overrightarrow {NC}  =  - \overrightarrow {NB} \)

Do đó: \(\overrightarrow {CM}  - \overrightarrow {NB}  = \overrightarrow {CM}  + \overrightarrow {NC}  = \overrightarrow {NC}  + \overrightarrow {CM} \)(tính chất giáo hoán)

\( \Rightarrow \overrightarrow {CM}  - \overrightarrow {NB}  = \overrightarrow {NM}  \Leftrightarrow \;|\overrightarrow {CM}  - \overrightarrow {NB} |\, = \;|\overrightarrow {NM} | = NM.\)

Vì: M, N lần lượt là trung điểm của AC, BC nên \(MN = \frac{1}{2}AB = \frac{a}{2}.\)

Vậy \(\;|\overrightarrow {CM}  - \overrightarrow {NB} |\, = \frac{a}{2}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved