PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1

Phần câu hỏi bài 10 trang 30, 31 Vở bài tập toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 30.
Câu 31.
Câu 32.
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 30.
Câu 31.
Câu 32.

Câu 30.

Khoanh tròn vào chữ cái trước đẳng thức đúng

\((A)\,\,\left( { - 3{x^{2n}}{y^n}{z^n}} \right)\)\(:\left( { - \dfrac{3}{5}{x^n}{y^{n - 1}}{z^{n - 3}}} \right) \)\(=  - 5{x^n}y{z^3}\)

\((B)\,\,\left( { - 3\dfrac{1}{4}{x^{2n + 1}}{y^{n - 2}}{z^{n + 4}}} \right)\)\(:\left( { - 5\dfrac{3}{4}{x^{n - 1}}{y^{n - 3}}{z^{n - 2}}} \right) \)\(= \dfrac{{13}}{{23}}{x^n}y{z^6}\)

\((C)\,\,\left( {\dfrac{2}{5}{x^6}{y^3}{z^4}} \right)\)\(:\left( { - \dfrac{3}{{25}}{x^2}y{z^4}} \right) \)\(=  - 3\dfrac{1}{3}{x^4}{y^2}\)

\((D)\,\,5{x^9}{y^5}{z^3}:\left( { - \dfrac{2}{3}{x^5}{y^4}{z^2}} \right) \)\(=  - 8\dfrac{1}{2}{x^4}yz\)  

Phương pháp giải:

Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau:

- Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\)

- Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\)

- Nhân các kết quả vừa tìm được với nhau.

Giải chi tiết:

\((A)\,\left( { - 3{x^{2n}}{y^n}{z^n}} \right)\)\(:\left( { - \dfrac{3}{5}{x^n}{y^{n - 1}}{z^{n - 3}}} \right)\)

\( = \left[ {\left( { - 3} \right):\left( { - \dfrac{3}{5}} \right)} \right]\)\(.\left( {{x^{2n}}:{x^n}} \right).\left( {{y^n}:{y^{n - 1}}} \right).\left( {{z^n}:{z^{n - 3}}} \right)\)

\( = \left( { - 3} \right).\left( {\dfrac{{ - 5}}{3}} \right).{x^{2n - n}}.{y^{n - \left( {n - 1} \right)}}\)\(.{z^{n - \left( {n - 3} \right)}}\)

\(= 5{x^n}y{z^3}\)

\((B)\,\left( { - 3\dfrac{1}{4}{x^{2n + 1}}{y^{n - 2}}{z^{n + 4}}} \right)\)\(:\left( { - 5\dfrac{3}{4}{x^{n - 1}}{y^{n - 3}}{z^{n - 2}}} \right)\)

\( = \left[ {\left( { - 3\dfrac{1}{4}} \right):\left( { - 5\dfrac{3}{4}} \right)} \right]\)\(.\left( {{x^{2n + 1}}:{x^{n - 1}}} \right)\)\(.\left( {{y^{n - 2}}:{y^{n - 3}}} \right).\left( {{z^{n + 4}}:{z^{n - 2}}} \right)\)

\( = \left[ {\left( {\dfrac{{ - 13}}{4}} \right):\left( {\dfrac{{ - 23}}{4}} \right)} \right]\)\(.{x^{2n + 1 - \left( {n - 1} \right)}}.{y^{n - 2 - \left( {n - 3} \right)}}.{z^{n + 4 - \left( {n - 2} \right)}}\)

\(= \left( {\dfrac{{ - 13}}{4}.\dfrac{{ - 4}}{{23}}} \right).{x^{n + 2}}y.{z^6}\)

\( = \dfrac{{13}}{{23}}{x^{n + 2}}y{z^6}\)

\((C)\,\left( {\dfrac{2}{5}{x^6}{y^3}{z^4}} \right)\)\(:\left( { - \dfrac{3}{{25}}{x^2}y{z^4}} \right)\)

\( = \left[ {\dfrac{2}{5}:\left( {\dfrac{{ - 3}}{{25}}} \right)} \right]\)\(.\left( {{x^6}:{x^2}} \right).\left( {{y^3}:y} \right).\left( {{z^4}:{z^4}} \right)\)

\( = \dfrac{2}{5}.\dfrac{{ - 25}}{3}.{x^{6 - 2}}.{y^{3 - 1}}.{z^{4 - 4}}\)

\( = \dfrac{{ - 10}}{3}{x^4}{y^2} \)

\(=  - 3\dfrac{1}{3}{x^4}{y^2}\)

\((D)\,5{x^9}{y^5}{z^3}\)\(:\left( { - \dfrac{2}{3}{x^5}{y^4}{z^2}} \right)\)

\( = \left( {5:\dfrac{{ - 2}}{3}} \right).\left( {{x^9}:{x^5}} \right)\)\(.\left( {{y^5}:{y^4}} \right).\left( {{z^3}:{z^2}} \right)\)

\( = 5.\dfrac{{ - 3}}{2}.{x^{9 - 5}}.{y^{5 - 4}}.{z^{3 - 2}}\)

\( = \dfrac{{ - 15}}{2}{x^4}yz \)\(=  - 7\dfrac{1}{2}{x^4}yz\)  

Chọn C.

Câu 31.

Điền dấu “x” vào ô thích hợp.

Phương pháp giải:

Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau:

- Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\)

- Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\)

- Nhân các kết quả vừa tìm được với nhau.

Giải chi tiết:

\(+)\,{x^{12}}{y^7}{z^{n + 1}}:x{y^3}{z^n}\)

\( = \left( {{x^{12}}:x} \right).\left( {{y^7}:{y^3}} \right)\)\(.\left( {{z^{n + 1}}:{z^n}} \right)\)

\(= {x^{12 - 1}}{y^{7 - 3}}{z^{n + 1 - n}} \)

\(= {x^{11}}{y^4}z\)

\(+)\,\left( { - {x^{m + 2}}{y^{n - 9}}{z^{p + 5}}{t^{q - 1}}} \right)\)\(:{x^{m - 5}}{y^{n - 20}}{z^p}\)

\( = \left( { - {x^{m + 2}}:{x^{m - 5}}} \right)\)\(.\left( {{y^{n - 9}}:{y^{n - 20}}} \right)\)\(.\left( {{z^{p + 5}}:{z^p}} \right).{t^{q - 1}}\)

\( =  - {x^{m + 2 - \left( {m - 5} \right)}}\)\(.{y^{n - 9 - \left( {n - 20} \right)}}.{z^{p + 5 - p}}.{t^{q - 1}}\)\( =  - {x^7}{y^{11}}{z^5}{t^{q - 1}}\)

\(+)\,5\dfrac{1}{2}{a^{m + 5}}{b^{m - 3}}{c^8}\)\(:\left( { - 1\dfrac{3}{5}{a^{m - 5}}{b^{m - 8}}{c^3}} \right.\)

\( = \left[ {5\dfrac{1}{2}:\left( { - 1\dfrac{3}{5}} \right)} \right]\)\(.\left( {{a^{m + 5}}:{a^{m - 5}}} \right)\)\(.\left( {{b^{m - 3}}:{b^{m - 8}}} \right).\left( {{c^8}:{c^3}} \right)\)

\( = \left( {\dfrac{{11}}{2}:\dfrac{{ - 8}}{5}} \right).{a^{m + 5 - \left( {m - 5} \right)}}\)\(.{b^{m - 3 - \left( {m - 8} \right)}}.{c^{8 - 3}}\)

\( = \dfrac{{ - 55}}{{16}}{a^{10}}{b^5}{c^5} \)\(=  - 3\dfrac{7}{{16}}{a^{10}}{b^5}c\)

\(+)\,\dfrac{2}{5}{x^{n + 9}}{y^{n + 2}}:\left( { - \dfrac{3}{7}{x^2}{y^3}} \right)\)

\( = \left[ {\dfrac{2}{5}:\left( { - \dfrac{3}{7}} \right)} \right].\left( {{x^{n + 9}}:{x^2}} \right)\)\(.\left( {{y^{n + 2}}:{y^3}} \right)\)

\(= \left( {\dfrac{2}{5}.\dfrac{{ - 7}}{3}} \right).{x^{n + 9 - 2}}.{y^{n + 2 - 3}}\)

\( =  - \dfrac{{14}}{{15}}{x^{n + 7}}{y^{n - 1}}\)

\(\begin{array}{l}+)\,{x^n}{y^{n + 1}}{z^{n + 2}}:{x^n}{y^n}{z^n}\\ = \left( {{x^n}:{x^n}} \right).\left( {{y^{n + 1}}:{y^n}} \right).\left( {{z^{n + 2}}:{z^n}} \right)\\ = {x^{n - n}}.{y^{n + 1 - n}}.{z^{n + 2 - n}} = y{z^2}\end{array}\)

Ta có bảng sau: 

 

Câu 32.

Khoanh tròn vào chữ cái trước đẳng thức sai

\(\begin{array}{l}(A)\,\,\left( { - {x^n}{y^n}{z^n}} \right):{x^{n - 1}}{y^{n - 2}}{z^{n - 3}} \\=  - x{y^2}{z^3}\\(B)\,\,\left( { - \dfrac{2}{3}{x^{n + 1}}{y^{n + 2}}} \right):\left( { - \dfrac{3}{4}{x^n}{y^{n - 8}}} \right) \\= \dfrac{8}{9}x{y^{10}}\\(C)\,\,{x^{2007}}{y^{2008}}{z^{2009}}:\left( { - \dfrac{1}{5}{x^2}yz} \right) \\=  - 5{x^{2005}}{y^{2007}}{z^{2008}}\\(D)\,\,\left( { - 5{x^5}{y^{10}}{z^{15}}{t^{20}}} \right):\left( { - \dfrac{2}{3}{x^2}{y^4}{z^6}} \right) \\= 6\dfrac{1}{2}{x^3}{y^6}{z^9}{t^{20}}\end{array}\) 

Phương pháp giải:

Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau:

- Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\)

- Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\)

- Nhân các kết quả vừa tìm được với nhau. 

Giải chi tiết:

\(+)\,\left( { - {x^n}{y^n}{z^n}} \right):{x^{n - 1}}{y^{n - 2}}{z^{n - 3}}\)

\( =  - \left( {{x^n}:{x^{n - 1}}} \right).\left( {{y^n}:{y^{n - 2}}} \right)\)\(.\left( {{z^n}:{z^{n - 3}}} \right)\) 

\( =  - {x^{n - \left( {n - 1} \right)}}.{y^{n - \left( {n - 2} \right)}}.{z^{n - \left( {n - 3} \right)}} \)

\(=  - x{y^2}{z^3}\)

\(+)\,\left( { - \dfrac{2}{3}{x^{n + 1}}{y^{n + 2}}} \right)\)\(:\left( { - \dfrac{3}{4}{x^n}{y^{n - 8}}} \right)\)

\( = \left[ {\left( { - \dfrac{2}{3}} \right):\left( { - \dfrac{3}{4}} \right)} \right]\)\(.\left( {{x^{n + 1}}:{x^n}} \right).\left( {{y^{n + 2}}:{y^{n - 8}}} \right)\)

\( = \left( {\dfrac{{ - 2}}{3}.\dfrac{{ - 4}}{3}} \right)\)\(.{x^{n + 1 - n}}.{y^{n + 2 - \left( {n - 8} \right)}} \)

\(= \dfrac{8}{9}x{y^{10}}\)

\(+)\,{x^{2007}}{y^{2008}}{z^{2009}}\)\(:\left( { - \dfrac{1}{5}{x^2}yz} \right)\)

\( = 1:\left( { - \dfrac{1}{5}} \right).\left( {{x^{2007}}:{x^2}} \right)\)\(.\left( {{y^{2008}}:y} \right)\)\(.\left( {{z^{2009}}:z} \right)\)

\( = 1.\left( {\dfrac{{ - 5}}{1}} \right)\)\(.{x^{2007 - 2}}.{y^{2008 - 1}}.{z^{2009 - 1}} \)

\(=  - 5{x^{2005}}{y^{2007}}{z^{2008}}\)

\(+)\,\left( { - 5{x^5}{y^{10}}{z^{15}}{t^{20}}} \right)\)\(:\left( { - \dfrac{2}{3}{x^2}{y^4}{z^6}} \right)\)

\( = \left[ {\left( { - 5} \right):\left( {\dfrac{{ - 2}}{3}} \right)} \right]\)\(.\left( {{x^5}:{x^2}} \right)\)\(.\left( {{y^{10}}:{y^4}} \right)\)\(.\left( {{z^{15}}:{z^6}} \right).{t^{20}}\)

\( = \left( { - 5} \right).\left( {\dfrac{{ - 3}}{2}} \right)\)\(.{x^{5 - 2}}.{y^{10 - 4}}.{z^{15 - 6}}.{t^{20}}\)

\( = \dfrac{{15}}{2}{x^3}{y^6}{z^9}{t^{20}} \)

\(= 7\dfrac{1}{2}{x^3}{y^6}{z^9}{t^{20}}\)

Chọn D.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved