Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Câu 9
Tra bảng căn bậc hai, tìm \(\sqrt {1,67} \) được: \(\sqrt {1,67} \approx 1,292\) .
Vậy suy ra \(\sqrt {167} \) có giá trị gần đúng là:
(A) 1292 (B) 192,2
(C) 12,92 (D) 1,292
Phương pháp giải:
Nhân giá trị gần đúng đã cho của \(\sqrt {1,67} \) với \(10\).
Lời giải chi tiết:
\(\sqrt {167} = \sqrt {1,67} .\sqrt {100}\)\( \approx 1,292.10 \approx 12,92\)
Đáp án cần chọn là C.
Câu 10
Tra bảng căn bậc hai, tìm \(\sqrt {21,34} \) được: \(\sqrt {21,34} \approx 4,619\) .
Vậy suy ra \(\sqrt {0,2134} \) có giá trị gần đúng là: (kiểm tra lại đề bài)
(A) 0,4619 (B) 4,619
(C) 46,19 (D) 461,9
Phương pháp giải:
Chia giá trị gần đúng đã cho của \(\sqrt {21,34} \) với \(10\).
Lời giải chi tiết:
\(\sqrt {0,2134} = \sqrt {21,34} :\sqrt {100}\)\( \approx 4,619:10 \approx 0,4619\)
Đáp án cần chọn là A.
Đề thi vào 10 môn Toán Huế
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Ngữ văn lớp 9
SBT tiếng Anh 9 mới tập 1
CHƯƠNG 2. KIM LOẠI
Đề thi vào 10 môn Toán Vĩnh Long