Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Câu 17.
Giả sử \(\dfrac{A}{M}\) và \(\dfrac{B}{M}\) là hai phân thức, \(\dfrac{A}{M} + \dfrac{B}{M}\) bằng biểu thức
\(\begin{array}{l}(A)\,\dfrac{{A + B}}{{M + M}}\\(B)\,\,\dfrac{{A + B}}{M}\\(C)\,\,\dfrac{{A + B}}{{M.M}}\\(D)\,\,A + \dfrac{B}{M}\end{array}\)
Phương pháp giải:
Quy tắc: Muốn cộng hai phân thức cùng mẫu thức ta cộng các tử thức với nhau, giữ nguyên mẫu thức.
\( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)
Giải chi tiết:
Ta có \(\dfrac{A}{M} + \dfrac{B}{M}=\dfrac{{A + B}}{M}\)
Chọn B.
Câu 18.
Giả sử \(\dfrac{A}{B}\) và \(\dfrac{C}{D}\) là hai phân thức. Tổng \(\dfrac{A}{B} + \dfrac{C}{D}\) bằng biểu thức
\(\begin{array}{l}(A)\,\,\dfrac{{A + C}}{{B + D}}\\(B)\,\,\dfrac{{A + C}}{{B.D}}\\(C)\,\,\dfrac{{A.C}}{{B + D}}\\(D)\,\,\dfrac{{A.D + B.C}}{{B.D}}\end{array}\)
Phương pháp giải:
Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)
Giải chi tiết:
Ta có: \(\dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)
Chọn D.
Câu 19.
Tổng của hai phân thức \(\dfrac{x}{{2\left( {x + y} \right)}}\) và \(\dfrac{{x + 2y}}{{2x + 2y}}\) là phân thức
\(\begin{array}{l}(A)\,\,\dfrac{{2x}}{{2y + 2x}}\\(B)\,\,\dfrac{{2x + 2y}}{{4x + 4y}}\\(C)\,\,\dfrac{1}{2}\\(D)\,\,1\end{array}\)
Phương pháp giải:
Quy tắc: Muốn cộng hai phân thức cùng mẫu thức ta cộng các tử thức với nhau, giữ nguyên mẫu thức.
\( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)
Giải chi tiết:
\(\begin{array}{l}\dfrac{x}{{2\left( {x + y} \right)}} + \dfrac{{x + 2y}}{{2x + 2y}}\\ = \dfrac{x}{{2\left( {x + y} \right)}} + \dfrac{{x + 2y}}{{2\left( {x + y} \right)}}\\ = \dfrac{{x + x + 2y}}{{2\left( {x + y} \right)}} = \dfrac{{2x + 2y}}{{2\left( {x + y} \right)}}\\ = \dfrac{{2x + 2y}}{{2x + 2y}} = 1\end{array}\)
Chọn D.
Câu 20.
Tổng \(\dfrac{1}{{6{x^2}y}} + \dfrac{3}{{10x{y^2}}}\) bằng biểu thức
\(\begin{array}{l}(A)\,\,\dfrac{4}{{10{x^2}{y^2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,\dfrac{{10y + 18x}}{{60{x^3}{y^3}}}\\(C)\,\,\dfrac{{5y + 9x}}{{30{x^2}{y^2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\,\dfrac{{5y + 3x}}{{30{x^2}{y^2}}}\end{array}\)
Phương pháp giải:
Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
Giải chi tiết:
Ta có:
\(\begin{array}{l}6{x^2}y = 2.3.{x^2}.y\\10x{y^2} = 2.5.x.{y^2}\\ \Rightarrow MTC = 2.3.5.{x^2}.{y^2} = 30{x^2}{y^2}\end{array}\)
\(\begin{array}{l}\dfrac{1}{{6{x^2}y}} + \dfrac{3}{{10x{y^2}}} = \dfrac{{5y}}{{30{x^2}{y^2}}} + \dfrac{{3.3x}}{{30{x^2}{y^2}}}\\ = \dfrac{{5y}}{{30{x^2}{y^2}}} + \dfrac{{9x}}{{30{x^2}{y^2}}} = \dfrac{{5y + 9x}}{{30{x^2}{y^2}}}\end{array}\)
Chọn C.
Chủ đề 3. Trái tim người thầy
Bài 3. Lao động cần cù, sáng tạo
Chủ đề 4. Rèn luyện bản thân
CHƯƠNG 6. TRAO ĐỔI CHẤT VÀ NĂNG LƯỢNG
Tải 20 đề thi học kì 1 mới nhất có lời giải
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8