Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp - Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, quạt tròn
Ôn tập chương III. Góc với đường tròn
Câu 14
Câu 14
Hãy điền những từ còn thiếu vào các chỗ trống (…) trong các trường hợp sau:
a) Với đoạn thẳng AB và góc \(\alpha \left( {{0^o} < \alpha < {{180}^o}} \right)\) cho trước thì quỹ tích các điểm M thỏa mãn \(\widehat {AMB} = \alpha \) là……
b) Khi \(\alpha = {90^o}\) thì hai cung……đường kính AB. Như vậy, ta có: Quỹ tích các điểm ……cho trước dưới một góc vuông là…..
Phương pháp giải:
Sử dụng lý thuyết về cung chứa góc :
+ Với đoạn thẳng \(AB\) và góc \(\alpha \) \(\left( {0^\circ < \alpha < 180^\circ } \right)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat {AMB} = \alpha \) là hai cung chứa góc \(\alpha \) dựng trên đoạn \(AB\).
Chú ý : Hai cung chứa góc \(\alpha \) nói trên là hai cung tròn đối xứng nhau qua \(AB\). Hai điểm \(A,B\) được coi là thuộc quỹ tích.
Đặc biệt : Quỹ tích các điểm \(M\) nhìn đoạn thẳng \(AB\) cho trước dưới một góc vuông là đường tròn đường kính \(AB\).
Lời giải chi tiết:
a) Với đoạn thẳng \(AB\) và góc \(\alpha \) \(\left( {0^\circ < \alpha < 180^\circ } \right)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat {AMB} = \alpha \) là hai cung chứa góc \(\alpha \) dựng trên đoạn \(AB\).
b) Khi \(\alpha = 90^\circ \) thì hai cung là hai nửa đường tròn đối xứng nhau qua đường kính \(AB.\)
Như vậy, ta có: Quỹ tích các điểm nhìn đoạn thẳng \(AB\) cho trước dưới một góc vuông là đường tròn đường kính \(AB\).
Câu 15
Câu 15
Cho tam giác ABC có \(\widehat A = {60^o}\) và cạnh BC cố định. Khi điểm A thay đổi thì quỹ tích các điểm A là:
(A) Đường tròn
(B) Một cung
(C) Hai cung
(D) Kết quả khác
Phương pháp giải:
Với đoạn thẳng \(AB\) và góc \(\alpha \) \(\left( {0^\circ < \alpha < 180^\circ } \right)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat {AMB} = \alpha \) là hai cung chứa góc \(\alpha \) dựng trên đoạn \(AB\).
Lời giải chi tiết:
Vì \(\widehat {BAC} = 60^\circ \) và \(BC\) cố định nên quỹ tích điểm \(A\) là hai cung chứa góc \(60^\circ \) dựng trên đoạn \(BC\) .
Chọn đáp án C.
Unit 3: Teen stress and pressure
Đề kiểm tra 15 phút - Chương 9 - Sinh 9
Đề thi vào 10 môn Toán Vĩnh Long
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 9
Chương 5. Dẫn xuất của hiđrocacbon. Polime