Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
1. Định nghĩa
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.
2. Cách xác định góc giữa hai mặt phẳng
TH1: Hai mặt phẳng \(\left( P \right),\left( Q \right)\) song song hoặc trùng nhau thì góc giữa chúng bằng \({0^0}\).
TH2: Hai mặt phẳng \(\left( P \right),\left( Q \right)\) không song song hoặc trùng nhau.
Cách 1:
+) Dựng hai đường thẳng \(n,p\) lần lượt vuông góc với hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
+) Khi đó, góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) là góc giữa hai đường thẳng \(n,p\).
Cách 2:
+) Xác định giao tuyến \(\Delta \) của hai mặt phẳng \(\left( P \right),\left( Q \right)\).
+) Tìm một mặt phẳng \(\left( R \right)\) vuông góc \(\Delta \) và cắt và hai mặt phẳng theo các giao tuyến \(a,b\).
+) Góc giữa hai mặt phẳng \(\left( P \right),\left( Q \right)\) là góc giữa \(a\) và \(b\).
b) Diện tích hình chiếu của đa giác
Gọi \(S\) là diện tích của đa giác \(\left( H \right)\) trong \(\left( P \right),S'\) là diện tích hình chiếu \(\left( {H'} \right)\) của \(\left( H \right)\) trên mặt phẳng \(\left( Q \right)\) và \(\alpha = \left( {\left( P \right),\left( Q \right)} \right)\). Khi đó:
\(S' = S.\cos \alpha \)
Ví dụ: Cho tứ diện \(ABCD\) có \(\Delta BCD\) vuông cân tại \(B\), \(AB \bot \left( {BCD} \right),BC = BD = a\), góc giữa \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) là \({30^0}\). Tính diện tích toàn phần của tứ diện \(ABCD\).
Giải:
- Xác định góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\):
Ta có: \(\Delta ABC = \Delta ABC\left( {c.g.c} \right) \Rightarrow AC = AD\) (cạnh tương ứng)
Gọi \(E\) là trung điểm của \(CD \Rightarrow AE \bot CD,BE \bot CD\).
Ta có: \(\left\{ \begin{array}{l}\left( {ACD} \right) \cap \left( {BCD} \right) = CD\\AE \bot CD\\BE \bot CD\end{array} \right.\) nên góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) là góc giữa hai đường thẳng \(AE,BE\).
Do đó \(\widehat {AEB} = {30^0}\).
- Tính diện tích toàn phần của tứ diện:
Tam giác vuông cân \(BCE\) có:
\(CD = \sqrt {B{C^2} + B{D^2}} = a\sqrt 2 \Rightarrow BE = \dfrac{1}{2}CD = \dfrac{1}{2}.a\sqrt 2 = \dfrac{{a\sqrt 2 }}{2}\)
Tam giác vuông \(ABE\) có \(AB = BE.\tan {30^0} = \dfrac{{a\sqrt 2 }}{2}.\dfrac{{\sqrt 3 }}{3} = \dfrac{{a\sqrt 6 }}{6}\)
Do đó:
\({S_{ABC}} = \dfrac{1}{2}BA.BC = \dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{6}.a = \dfrac{{{a^2}\sqrt 6 }}{{12}}\)
\({S_{ABD}} = \dfrac{1}{2}BA.BD = \dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{6}.a = \dfrac{{{a^2}\sqrt 6 }}{{12}}\)
\({S_{BCD}} = \dfrac{1}{2}BC.BD = \dfrac{{{a^2}}}{2}\)
\({S_{ACD}} = \dfrac{{{S_{BCD}}}}{{\cos {{30}^0}}} = \dfrac{1}{2}{a^2}:\dfrac{{\sqrt 3 }}{2} = \dfrac{{{a^2}}}{{\sqrt 3 }} = \dfrac{{{a^2}\sqrt 3 }}{3}\)
Vậy diện tích toàn phần của tứ diện là:
\(S = {S_{ABC}} + {S_{ABD}} + {S_{BCD}} + {S_{ACD}} = \dfrac{{{a^2}\sqrt 6 }}{{12}} + \dfrac{{{a^2}\sqrt 6 }}{{12}} + \dfrac{{{a^2}\sqrt 3 }}{3} + \dfrac{{{a^2}}}{2} = \dfrac{{{a^2}\left( {\sqrt 6 + 2\sqrt 3 + 3} \right)}}{6}\) .
CHƯƠNG IV- TỪ TRƯỜNG
Unit 1: Generations
HÌNH HỌC SBT - TOÁN 11
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Chủ đề 4: Chiến thuật thi đấu cơ bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11