Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.
1. Nguyên hàm và tính chất
a. Định nghĩa
Kí hiệu \(K\) là khoảng, đoạn hoặc nửa khoảng của \(R\).
Cho hàm số \(f(x)\) xác định trên \(K\).
Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên \(K\) nếu \(F'(x) = f(x)\) với mọi \(x ∈ K\).
b. Định lý
1) Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số \(C\), hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên \(K\).
2) Ngược lại, nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(K\) thì mọi nguyên hàm của \(f(x)\) trên \(K\) đều có dạng \(F(x) + C\) với \(C\) là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(∫f(x)dx\)
Khi đó : \(∫f(x)dx =F(x) + C , C ∈ R.\)
c. Tính chất của nguyên hàm
\(∫f(x)dx = F(x) + C, C ∈ R.\)
\(∫kf(x)dx =k ∫f(x)dx \)(với k là hằng số khác 0)
\(∫(f(x) ± g(x)) = ∫f(x)dx ± ∫g(x)dx\)
d. Sự tồn tại nguyên hàm
Định lí: Mọi hàm số \(f(x)\) liên tục trên \(K\) đều có nguyên hàm trên \(K\).
Bảng nguyên hàm của các hàm số thường gặp
2. Phương pháp tìm nguyên hàm
a) Phương pháp đổi biến số
Định lý 1: Nếu \(\int {f\left( u \right)du} = F\left( u \right) + C\) và \(u = u\left( x \right)\) là hàm số có đạo hàm liên tục thì \(\int {f\left( {u\left( x \right)} \right)u'\left( x \right)dx} = F\left( {u\left( x \right)} \right) + C\)
Hệ quả: \(\int {f\left( {ax + b} \right)dx} = \frac{1}{a}F\left( {ax + b} \right) + C\left( {a \ne 0} \right)\)
b. Phương pháp tính nguyên hàm từng phần
Định lý 2: Nếu hai hàm số \(u = u\left( x \right)\) và \(y = v\left( x \right)\) có đạo hàm liên tục trên \(K\) thì \(\int {u\left( x \right)v'\left( x \right)dx} = u\left( x \right)v\left( x \right) - \int {u'\left( x \right)v\left( x \right)dx} \).
Chú ý: Viết gọn \(\int {udv} = uv - \int {vdu} \).
Tổng hợp từ vựng lớp 12 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 12
Chương 9: Hóa học và vấn đề phát triển kinh tế, xã hội và môi trường
Đề thi học kì 2
CHƯƠNG 4. POLIME VÀ VẬT LIỆU POLIME
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 12