Luyện tập 2 trang 138 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho tam giác ABC cân tại A. Họ H, D lần lượt là trung điểm của các cạnh BC và AB.

a) Chứng minh rằng tứ giác ADHC là hình thang.

b) Gọi E là điểm đối xứng với H qua D. CHứng minh rằng tứ giác AHBE là hình chữ nhật.

c) Tia CD cắt AH ở M và cắt BE ở N. Chứng minh tứ giác AMBN là hình bình hành.

Lời giải chi tiết

a) Ta có D, H lần lượt là trung điểm của AB và BC.

\( \Rightarrow DH\) là đường trung bình của tam giác ABC.

\( \Rightarrow DH//AC \Rightarrow \) Tứ giác ADHC là hình thang.

b) \(\Delta ABC\) cân tại A có AH là đường trung tuyến (H là trung điểm của BC)

\( \Rightarrow AH\) là đường cao của tam giác ABC.

\( \Rightarrow AH \bot BC\) tại H.

Tứ giác AHBE có AB và EH cắt nhau tại D (gt)

D là trung điểm của AB (gt)

D là trung điểm của EH (E là điểm đối xứng với H qua D),

\(\widehat {NED} = \widehat {DHM}\) (hai góc so le trong và EB // AH)

Và \(\widehat {EDN} = \widehat {HDM}\) (hai góc đối đỉnh), do đó \(\Delta END = \Delta HDM\,\,\left( {g.c.g} \right)\)

\( \Rightarrow ND = MD \Rightarrow D\) là trung điểm của NB \(\left( {D \in NM} \right)\)

Mặt khác D là trung điểm của AB (gt) và NM, AB cắt nhau tại D (gt)

Do đó tứ giác AMBN là hình bình hành (dấu hiệu nhận biết hình bình hành)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved